Return to search

Modelos de regressão quando a função de taxa de falha não é monótona e o modelo probabilístico beta Weibull modificada / Regression models when the failure rate function is no monotone and the new beta modified Weibull model

Em aplicações na área de análise de sobrevivência, é freqüente a ocorrência de função de taxa de falha em forma de U ou unimodal, isto e, funções não-monótonas. Os modelos de regressão comumente usados para dados de sobrevivência são log-Weibull, função de taxa de falha monótona, e log-logística, função de taxa de falha decrescente ou unimodal. Um dos objetivos deste trabalho e propor os modelos de regressão, em forma de locação e escala, log-Weibull estendida que apresenta função de taxa de falha em forma de U e log- Burr XII que tem como caso particular o modelo de regressão log-logística. Considerando dados censurados, foram utilizados três métodos para estimação dos parâmetros, a saber, máxima verossimilhança, bayesiana e jackkinife. Para esses modelos foram calculadas algumas medidas de diagnósticos de influência local e global. Adicionalmente, desenvolveu-se uma análise de resíduos baseada no resíduo tipo martingale. Para diferentes parâmetros taxados, tamanhos de amostra e porcentagens de censuras, várias simulações foram feitas para avaliar a distribuição empírica do resíduo tipo martingale e compará-la com a distribuição normal padrão. Esses estudos sugerem que a distribuição empírica do resíduo tipo martingale para o modelo de regressão log-Weibull estendida com dados censurados aproxima-se de uma distribuição normal padrão quando comparados com outros resíduos considerados neste estudo. Para o modelo de regressão log-Burr XII, foi proposta uma modificação no resíduo tipo martingale baseada no estudo de simulação para obter concordância com a distribuição normal padrão. Conjuntos de dados reais foram utilizados para ilustrar a metodologia desenvolvida. Também pode ocorrer que em algumas aplicações a suposição de independência dos tempos de sobrevivência não é válida. Assim, outro objetivo deste trabalho é introduzir um modelo de regressão log-Burr XII com efeito aleatório para o qual foi proposto um método de estimação para os parâmetros baseado no algoritmo EM por Monte Carlo. Por fim, foi desenvolvido um novo modelo probabilístico denominado de beta Weibull modificado que apresenta cinco parâmetros. A vantagem desse novo modelo é a flexibilidade em acomodar várias formas da função de taxa de falha, por exemplo, U e unimodal, e mostrou-se útil na discriminação entre alguns modelos probabilísticos alternativos. O método de máxima verossimilhança e proposto para estimar os parâmetros desta distribuição. A matriz de informação observada foi calculada. Um conjunto de dados reais é usado para ilustrar a aplicação da nova distribuição / In survival analysis applications, the failure rate function may have frequently unimodal or bathtub shape, that is, non-monotone functions. The regression models commonly used for survival studies are log-Weibull, monotone failure rate function shape, and log-logistic, decreased or unimodal failure rate function shape. In the first part of this thesis, we propose location-scale regression models based on an extended Weibull distribution for modeling data with bathtub-shaped failure rate function and on a Burr XII distribution as an alternative to the log-logistic regression model. Assuming censored data, we consider a classical analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed models. For these models, we derived the appropriate matrices for assessing the local influence on the parameter estimates under diferent perturbation schemes, and we also presented some ways to perform global influence. Additionally, we developed residual analy- sis based on the martingale-type residual. For di®erent parameter settings, sample sizes and censoring percentages, various simulation studies were performed and the empirical distribution of the martingale-type residual was displayed and compared with the standard normal distribution. These studies suggest that the empirical distribution of the martingale-type residual for the log-extended Weibull regression model with data censured present a high agreement with the standard normal distribution when compared with other residuals considered in these studies. For the log-Burr XII regression model, it was proposed a change in the martingale-type residual based on some studies of simulation in order to obtain an agreement with the standard normal distribution. Some applications to real data illustrate the usefulness of the methodology developed. It can also happen in some applications that the assumption of independence of the times of survival is not valid, so it was added to the log-Burr XII regression model of random exects for which an estimate method was proposed for the parameters based on the EM algorithm for Monte Carlo simulation. Finally, a five- parameter distribution so called the beta modified Weibull distribution is defined and studied. The advantage of that new distribution is its flexibility in accommodating several forms of the failure rate function, for instance, bathtub-shaped and unimodal shape, and it is also suitable for testing goodness-of-fit of some special sub-models. The method of maximum likelihood is used for estimating the model parameters. We calculate the observed information matrix. A real data set is used to illustrate the application of the new distribution.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10032009-094918
Date05 February 2009
CreatorsSilva, Giovana Oliveira
ContributorsOrtega, Edwin Moises Marcos
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0031 seconds