Return to search

Supporting cognitive engagement in a learning-by-doing learning environment: case studies of participant engagement and social configurations in kitchen science investigators

Learning-by-doing learning environments support a wealth of physical engagement in activities. However, there is also a lot of variability in what participants learn in each enactment of these types of environments. Therefore, it is not always clear how participants are learning in these environments. In order to design technologies to support learning in these environments, we must have a greater understanding of how participants engage in learning activities, their goals for their engagement, and the types of help they need to cognitively engage in learning activities.
To gain a greater understanding of participant engagement and factors and circumstances that promote and inhibit engagement, this dissertation explores and answers several questions: What are the types of interactions and experiences that promote and /or inhibit learning and engagement in learning-by-doing learning environments? What are the types of configurations that afford or inhibit these interactions and experiences in learning-by-doing learning environments? I explore answers to these questions through the context of two enactments of Kitchen Science Investigators (KSI), a learning-by-doing learning environment where middle-school aged children learn science through cooking from customizing recipes to their own taste and texture preferences. In small groups, they investigate effects of ingredients through the design of cooking and science experiments, through which they experience and learn about chemical, biological, and physical science phenomena and concepts (Clegg, Gardner, Williams,&Kolodner, 2006). The research reported in this dissertation sheds light on the different ways participant engagement promotes and/or inhibits cognitive engagement in by learning-by-doing learning environments through two case studies. It also provides detailed descriptions of the circumstances (social, material, and physical configurations) that promote and/or inhibit participant engagement in these learning environments through cross-case analyses of these cases. Finally, it offers suggestions about structuring activities, selecting materials and resources, and designing facilitation and software-realized scaffolding in the design of these types of learning environments. These design implications focus on affording participant engagement in science content and practices learning. Overall, the case studies, cross-case analyses, and empirically-based design implications begin to bridge the gap between theory and practice in the design and implementation of these learning environments. This is demonstrated by providing detailed and explanatory examples and factors that affect how participants take up the affordances of the learning opportunities designed into these learning environments.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/42786
Date29 August 2011
CreatorsGardner, Christina M.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0019 seconds