Return to search

Towards Fault Reactiveness in Wireless Sensor Networks with Mobile Carrier Robots

Wireless sensor networks (WSN) increasingly permeate modern societies nowadays. But in spite of their plethora of successful applications, WSN are often unable to surmount many operational challenges that unexpectedly arise during their lifetime. Fortunately, robotic agents can now assist a WSN in various ways. This thesis illustrates how mobile robots which are able to carry a limited number of sensors can help the network react to sensor faults, either during or after its deployment in the monitoring region.
Two scenarios are envisioned. In the first one, carrier robots surround a point of interest
with multiple sensor layers (focused coverage formation). We put forward the first known algorithm
of its kind in literature. It is energy-efficient, fault-reactive and aware of the bounded
robot cargo capacity. The second one is that of replacing damaged sensing units with spare,
functional ones (coverage repair), which gives rise to the formulation of two novel combinatorial
optimization problems. Three nature-inspired metaheuristic approaches that run at a centralized location are proposed. They are able to find good-quality solutions in a short time. Two frameworks for the identification of the damaged nodes are considered. The first one leans upon diagnosable systems, i.e. existing distributed detection models in which individual units perform tests upon each other. Two swarm intelligence algorithms are designed to quickly and reliably spot faulty sensors in this context. The second one is an evolving risk management framework for WSNs that is entirely formulated in this thesis.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU./en#10393/22685
Date04 April 2012
CreatorsFalcon Martinez, Rafael Jesus
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0017 seconds