Return to search

DQ-Frame Small-Signal Stability Analysis of AC Systems with Single-Phase and Three-Phase Converters

The widespread integration of power converters in applications such as microgrids and data centers has introduced significant stability challenges. This dissertation presents a novel approach to modeling and comprehensive stability analysis for both single-phase and three-phase converters, addressing vital gaps in the existing literature. The first part of the dissertation (Chapters 2 to 4) focuses on single-phase power supply units, proposing an impedance model and a loop gain model based on dq-frame analysis. These models have been validated through extensive experimental testing, demonstrating their effectiveness in stability analysis across a range of system configurations, including single-phase, three-phase three-wire, and three-phase four-wire systems. The second part (Chapters 5 and 6) examines three-phase converters used for integrating renewable energy into microgrids. It introduces a grid-forming control, followed by a detailed investigation into its impedance modeling and stability assessment. This part specifically tackles the challenges posed by the appearance of right-half-plane poles in stability analysis, proposing a new stability margin index to address these issues. The efficacy of these research findings is further substantiated by the development and implementation of a Power-Hardware-in-the-Loop testbed, providing practical validation. Overall, this dissertation has enhanced the modeling, understanding, and management of stability issues in power electronics systems, offering valuable insights and methodologies that are likely to influence future research and development in the field. / Doctor of Philosophy / Power electronics play a crucial role in many of today's advanced technologies, including Renewable Energy (like wind and solar power), Electric Vehicles, Cloud Computing, and Artificial Intelligence. In renewable energy, power electronics are key for converting energy sources for efficient grid integration. Electric vehicles rely on power converter systems for charging their batteries and driving their motors. Similarly, in Cloud Computing and Artificial Intelligence, power electronics ensure that the computers and servers in data centers have a steady and reliable power supply for operation. However, using these advanced power electronics on a large scale, like in wind farms or data centers, can lead to challenges, including many reported system instability issues. These issues highlight the importance of a thorough analysis and understanding of the behavior and interaction of power electronics systems.
In addressing these challenges, power electronics converters, conceptualized as a blend of circuits and control systems, demand comprehensive modeling from the ground up. Such modeling is essential to understanding their behavior, ranging from individual components to the entire system. This is key to establishing a clear connection between intricate design details and overall system performance. With power electronics systems becoming more complex and the continual emergence of new technologies, there remains a significant array of unanswered questions, especially in the domain of stability analysis for AC power electronics systems. This dissertation delves into two prominent modeling methods for stability analysis: impedance modeling and loop gain modeling. By exploring and addressing specific gaps identified in prior research, this work aims to contribute to a more profound understanding and enhanced application of these critical methods.
The research presented in this dissertation is methodically divided into two main sections. The first section, including Chapter 2 to Chapter 4 is dedicated to exploring single-phase converter power supply units (PSUs) systems. This section introduces innovative models for analyzing their stability, applicable to single-phase PSUs in various system configurations, including both single-phase and three-phase setups. This modeling approach is a significant step forward in understanding and enhancing the stability of single-phase PSU loads. The second section, including Chapter 5 and Chapter 6, delves into the analysis of three-phase converters used in integrating renewable energy sources into microgrids. A notable feature of these converters is their grid-forming control mechanism, which includes a new frequency and power droop control loop. This part also explores modeling the impact of these converters on microgrid stability. Moreover, the issue of right-half-plane (RHP) poles in impedance analysis- a complex problem that can affect stability analysis is addressed. It proposes innovative methods for measuring stability in such conditions.
In conclusion, this research made advancements in the modeling for stability analysis of power converter systems. For single-phase converters, the developed impedance model and loop gain model, based on dq-frame analysis, have been proven to be accurate. These models are versatile for stability analysis in various AC systems with single-phase PSU loads. In the study of three-phase converters, the grid-forming converter was successfully designed to support the grid as a distributed energy resource interface. This design contributes positively to microgrid stability. Furthermore, to address the presence of RHP poles in stability analysis, a new stability margin index was defined to better understand and manage these challenges. These findings represent important steps forward in the field of power electronics and contribute valuable insights for future research and development.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/119492
Date21 June 2024
CreatorsLin, Qing
ContributorsElectrical Engineering, Burgos, Rolando, Centeno, Virgilio A., Dong, Dong, Wen, Bo, Southward, Steve C.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0028 seconds