Return to search

Analysis of Three-Way Data and Other Topics in Clustering and Classification

Clustering and classification is the process of finding underlying group structure in heterogenous data. With the rise of the “big data” phenomenon, more complex data structures have made it so traditional clustering methods are oftentimes not advisable or feasible. This thesis presents methodology for analyzing three different examples of these more complex data types. The first is three-way (matrix variate) data, or data that come in the form of matrices. A large emphasis is placed on clustering skewed three-way data, and high dimensional three-way data. The second is click- stream data, which considers a user’s internet search patterns. Finally, co-clustering methodology is discussed for very high-dimensional two-way (multivariate) data. Parameter estimation for all these methods is based on the expectation maximization (EM) algorithm. Both simulated and real data are used for illustration. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25359
Date January 2020
CreatorsGallaugher, Michael Patrick Brian
ContributorsMcNicholas, Paul David, Mathematics and Statistics
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds