A crucial aspect of attentional control is the capacity of anticipating a stimulus appearance in order to improve the speed and effectiveness of its subsequent processing. Preparatory attention (PA) is the ability to modulate (enhance) the intensity of attention directed to a selected stimulus prior to its occurrence, preventing subjects from being distracted by interfering stimuli. Some studies propose that PA is lateralized to the right hemisphere (RH) while others suggest that both the left hemisphere (LH) and the RH participate in the modulation of PA. The aim of the present thesis was to examine the role of each brain hemisphere in the modulation of PA directed to a spatial location. We developed a lateralized version of the Attentional Preparatory Test, (APT, proposed par LaBerge, Auclair & Siéroff, 2000), named the Lateralized APT or LAPT. The APT measures the ability of subjects to modulate PA directed to a target location when the probability of a distractor occurrence varies across several blocks of trials. In the APT, the response times increased as the probability of a distractor appearing in the preparatory phase preceding the target presentation increased, showing that PA is modulated by the events occurring prior to the target appearance. We developed the LAPT using the divided visual field paradigm in which stimuli can occur in the left (LVF) or the right (RVF) visual fields. The visual field differences in subjects' performance are assumed to reflect differences in the processing strategies of both hemispheres (RVF/LH vs LVF/RH). In a series of studies we showed that the modulation of PA by the expected probability of events was different in each visual field/hemisphere, depending on task configuration. In the RVF/LH, PA is modulated by the expected probability of distractor events, especially when this probability is explicit. In addition, the LH seems to play a crucial role in modulating PA when the target and the distractor are hard to discriminate. In the LVF/RH, PA is modulated by the temporal probability of events and may depend on the most probable delay in which the target is expected, but only when the discrimination between the target and the distractor is easy. Most importantly, our findings suggest that the differences between RVF/LH and LVF/RH in the modulation of PA take place at the perceptual level of processing because they are independent of the hand use in executing the response, thus also independent of the processes taking place at the motor programming level. Taken together our results, they suggest that each hemisphere uses a different strategy to modulate PA when directed to a spatial location.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00875182 |
Date | 27 September 2013 |
Creators | Fernandez, Laura Gabriela |
Publisher | Université René Descartes - Paris V |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0018 seconds