No / Hydrolytic degradation studies have been undertaken on Maxon B, a bioresorbable block copolymer of polyglycolic acid (PGA) and polytrimethylene carbonate (TMC). Isotropic and oriented samples were studied by dynamic mechanical measurements over a wide range of temperatures. In addition to mechanical tests, water content and mass loss were also determined on the degraded samples. At early stages of degradation water content was the dominant factor and plasticisation lead to reductions in the glass transition temperatures of the PGA and TMC components. Orientation was shown to give significant improvements in the mechanical properties, including overall increases in modulus and an increase in the glass transition temperature of the PGA component, which is important for the behaviour at body temperature (37 °C). Oriented samples also showed significantly less reduction in mechanical properties on degradation. Simple one-dimensional Takayanagi models were used to provide useful insight into the understanding of the mechanical behaviour.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/3171 |
Date | 28 July 2009 |
Creators | Ward, Ian M., Hill, S.P., Klein, P.G., Rose, J., Montez De Oca, H., Farrar, D. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, No full-text in the repository |
Page generated in 0.0019 seconds