The world of precision medicine was revolutionized by the discovery of CRISPR-Cas systems. In particular, the capabilities of the programmable nuclease Cas9 and its derivatives have unlocked a world in which applied genome engineering to cure human disease is a reality being pursued in patient clinical trials. Gene editing via the induction of programmable, site-specific double strand breaks (DSBs) has been revolutionary for the precision medicine field. However, there are many safety concerns centered on the induction of DSBs causing potential undesirable on- and off-target consequences, particularly for in vivo CRISPR applications. To circumvent these warranted concerns, many groups have attempted to repurpose recombinases or engineer new fusion systems to perform programmable genome engineering without the induction of DSBs.
This dissertation will first highlight the development of recombinases for programmable DNA insertions over the course of decades, including efforts to evolve novel DNA recognition sequences, efforts to tether recombinases to programmable DNA-binding proteins, and the recent discovery of naturally occurring RNA-guided DNA transposition systems. This dissertation will then highlight the development of CRISPR-associated transposases (CASTs) as DSB-independent programmable mammalian gene editing tools capable of integrating large DNA cargos, as well as the future directions that may further enhance CAST activity in human cells. The works in this dissertation detail the initial efforts to engineer and optimize a new class of genome manipulation tools that were previously absent from the gene editing toolkit.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/rbwq-p277 |
Date | January 2023 |
Creators | King, Rebeca Teresa |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.002 seconds