Return to search

Studies of Inverted Organic Solar Cells Fabricated by Doctor Blading Technique

<p>Over the last few decades, bulk-heterojunction organic photovoltaic devices comprising an intimately mixed donor-acceptor blend have gained serious attention due to their potential for being cheap, light weight, flexible and environmentally friendly. In this thesis, APFO-3/PCBM bulk-heterojunction based organic photovoltaic devices with an inverted layer sequence were investigated systematically. Doctor blade coating is a technique that is roll-to-roll compatible and cost efficient and has been used to fabricate the solar cells.</p><p>Initial studies focused on optimization of the electrodes. A thin film of the conductive polymer PEDOT:PSS was chosen to be the transparent anode. Different PEDOT:PSS films with respect to the film thickness and deposition temperature were characterized in terms of conductivity and transmission. Decent conductance and transmittance were obtained in the films deposited with wet film thickness setting of 35 μm, The cathode was fabricated from a metal bilayer comprising Al and Ti with an area about 1 cm<sup>2</sup>, and the best-working cathodes contained a 70 nm thick Al layer covered by a thin Ti layer of about 10 -15 nm.</p><p>Optimized coating temperature and wet film thickness settings for the active layer and PEDOT:PSS layer were experimentally determined. The highest efficiency of the APFO-3/PCBM based inverted solar cells fabricated by doctor blading was 0.69%, which exceeded the efficiency of spin-coated inverted cells.</p><p>A higher efficiency (0.8 %) was achieved by adding a small amount of high molecular weight polystyrene to the active layer. Morphological changes after adding of the polystyrene were observed by optical microscopy and AFM. A coating temperature dependent phase separation of the APFO-3/PCBM/polystyrene blend was found.</p><p> </p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-54141
Date January 2010
CreatorsTang, Zheng
PublisherLinköping University, Department of Physics, Chemistry and Biology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0021 seconds