Return to search

Effect of lipid-based formulation on the solubilization patterns if poorly water-soluble drugs.

Poorly water-soluble drugs (PWSDs), to date, require advanced formulation techniques to improve solubility and achieve the required plasma concentration to show a therapeutic effect when orally administered. Lipid-based formulations (LBFs) are an enabling strategy that is being used to improve the oral delivery of PWSDs. The aim of this study was to investigate the effect of lipid-based formulation, Type IIIA-LC, on the solubilization patterns of PWSDs, namely, carvedilol and felodipine. Solubility studies, for both drugs, were performed with LBF dispersed in -1) dog intestinal fluid (DIF), and 2) water, to identify and compare the extent of solubility in different matrices, and in silico to identify interesting patterns with any correlations in experimental and computational data. Solubility studies showed that carvedilol had better solubility in LBF when compared to felodipine. Computational studies showed that both drugs solubilized in the colloid in both digested and undigested states. Effect of drug loading had no significant difference on the solubilization patterns of both drugs. The maximum drug loading done was for 100 molecules though there is the possibility of the colloid having a higher capacity. Digestion did not seem to have a significant effect on the distribution of both drugs. In vitro and in silico data were in qualitative agreement and therefore, this computational model can be further used to study the specific processes causing solubilization, improvement, and development of new LBFs.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-445332
Date January 2021
CreatorsGude, Manjiri
PublisherUppsala universitet, Institutionen för farmaci
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds