Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2015-03-10T19:43:19Z
No. of bitstreams: 2
DISSERTAÇÃO Edlaine Correia Sinézio da Silva.pdf: 4116734 bytes, checksum: 217d9a6dc7fa0ef298e86b4692361334 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-10T19:43:19Z (GMT). No. of bitstreams: 2
DISSERTAÇÃO Edlaine Correia Sinézio da Silva.pdf: 4116734 bytes, checksum: 217d9a6dc7fa0ef298e86b4692361334 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013-05-23 / Capes / Nas últimas décadas o Gás Natural Liquefeito- GNL tem se destacado enquanto promissora fonte de energia e consequentemente sua utilização vem crescendo consideravelmente. Todavia, devido à natureza inflamável do metano- principal componente do GNL- a ocorrência de acidentes com o seu vazamento nos terminais de transporte e armazenamento podem proporcionar perigo para a sociedade. Dentre os principais perigos associados ao GNL, está transição rápida de fase (RTP), incêndio em poça, incêndio em nuvem e explosões. Neste contexto, a Análise de Camadas de Proteção (LOPA) é uma forma simplificada de avaliação de risco que fornece resultados quantificados de risco com menos tempo e esforço do que a Análise Quantitativa de Riscos (AQR), por exemplo. A LOPA é um método semi-quantitativo que gera uma estimativa numérica da frequência de falha do cenário mitigado. Para o cálculo da frequência de falha do cenário, é necessário obter dados de falha. Contudo, por tratar-se de um terminal de GNL, os dados de falhas de equipamentos são esparsos, não sendo estatisticamente confiáveis por tratar-se de uma indústria recente. Neste caso, a análise Bayesiana é uma ótima ferramenta, pois possibilita utilizar dados específicos da planta em estudo e dados genéricos. Sejam os dados genéricos obtidos nos bancos de dados procedentes de várias indústrias, operando em diferentes condições, faz-se necessário considerar a não-homogeneidade da população. No entanto, na literatura encontra-se aplicações clássica da análise Bayesiana. Sendo assim, esta pesquisa propôs melhorar a metodologia apresentada na literatura utilizando os mesmos dados, porém empregando a Análise Bayesiana em Dois Estágios. O primeiro estágio é uma análise não homogênea, que considera a variabilidade populacional dos dados de falha entre os bancos de dados, e o segundo estágio gera uma distribuição a posteriori atualizada após a introdução dos dados específicos da planta. Finalmente, esta pesquisa comprovou que a metodologia LOPA-Bayesiana em Dois Estágios é mais viável, pois ela apresentou para a frequênca dos cenários mitigados, valores superiores aos encontrados em pesquisa anterior, o que confirma a subestimação do nível de incerteza.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/11845 |
Date | 23 May 2013 |
Creators | Silva, Edlaine Correia Sinézio da Silva |
Contributors | Droguett, Enrique Andrés López |
Publisher | Universidade Federal de Pernambuco |
Source Sets | IBICT Brazilian ETDs |
Language | Breton |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds