Return to search

Post-mining ground instability due to natural re-watering of dolomitic aquifer in the Merefong area

M.Tech. (Extraction Metallurgy) / The discovery of gold at Langlaagte in 1886 led to the development of gold mining in the Far West Rand in 1934. When shafts were sunk, water from the dolomites posed a serious threat to mining. Despite cementation that sealed the many fissures, water still found its way into the underground workings. This led to the “uniform” policy of dewatering. The farming communities in the area that were dependent on the ground water had to be considered, as they had lost their livelihood. As the water levels lowered, dolines and sinkholes were formed, posing a serious threat to life and property. When the mines eventually cease to operate, be it due to high working costs, or the declining grade of the ore body, the re-watering of the dolomitic compartments will occur as a natural consequence. When water comes to within six metres of the original water level, ground instability, the formation of dolines and sinkholes, both new and existing, will occur, threatening the important rail link between Pretoria and Cape Town as it passes through Far West Rand, as well as the N12 between Johannesburg and Potchefstroom, as well as the N14 which lies to the east connecting the Gauteng Province and the North West Province. The dewatering of the compartments caused the soil which formed the roof of the cavities to dry. Re-watering will cause this dry, stable material to become wet and unstable. Where mixtures of slime and/or other material, which is not part of the geological composition of that area was used, the same phenomenon will apply. A further complication is caused by the slimes dams which are unlined. In fact, some of the slime dams were deliberately constructed over cavernous dolomite. This large mass of mine tailings over the dolomitic aquifers will “liquefy”. If the re-watering is not carefully managed the rising water table will undoubtedly trigger a rash of new sinkholes, with catastrophic consequences for unsuspecting communities that may have been established in sensitive areas. The results of previous investigations by the Departments Minerals, Energy and Water Affairs who, due to the loss of institutional memory, might not be able to find the relevant information. Other organizations such as the Council for Geoscience could be using the results for consultancy. The information should be digitized and be available to the broader South African public. FWRDWA is currently in charge of monitoring events in the area. Levelling observations have been carried out quarterly and, so far the movement of ground is minimal. The potential hazard of ground instability will recur with the re-watering of the dolomitic compartments of the Far West Rand. To support what could happen, reference is made to events which took place in the late seventies when the Far West Rand had an above average rainfall. The Donaldson Dam overflowed into the Wonderfontein Spruit and into the dewatered Venterspost compartment. As a result, the water level of the Venterspost Compartment rose rapidly which led to the re-activation of sinkholes and the formation of new ones in the Venterspost area. In the present work levelling has been carried out along most of the loops affected and the results of the levelling give an impression that the surface is currently relatively stable. This Dissertation is presented as an attempt to alert the authorities to the potential dangers if the post mining period is not carefully monitored and insufficient provision made to deal with potential contingencies.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:12337
Date17 September 2014
CreatorsPhogole, Kedibone Solomon
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.0019 seconds