Return to search

Optimization of New Chinese Remainder Theorems Using Special Moduli Sets

The residue number system (RNS) is an integer number representation system, which is capable of supporting parallel, high-speed arithmetic. This system also offers some useful properties for error detection, error correction and fault tolerance. It has numerous applications in computation-intensive digital signal processing (DSP) operations, like digital filtering, convolution, correlation, Discrete Fourier Transform, Fast Fourier Transform, direct digital frequency synthesis, etc.
The residue to binary conversion is based on Chinese Remainder Theorem (CRT) and Mixed Radix Conversion (MRC). However, the CRT requires a slow large modulo operation while the MRC requires finding the mixed radix digits which is a slow process. The new Chinese Remainder Theorems (CRT I, CRT II and CRT III) make the computations faster and efficient without any extra overheads. But, New CRTs are hardware intensive as they require many inverse modulus operators, modulus operators, multipliers and dividers. Dividers and inverse modulus operators in turn needs many half and full adders and subtractors. So, some kind of optimization is necessary to implement these theorems practically.
In this research, for the optimization, new both co-prime and non co-prime multi modulus sets are proposed that simplify the new Chinese Remainder theorems by eliminating the huge summations, inverse modulo operators, and dividers. Furthermore, the proposed hardware optimization removes the multiplication terms in the theorems, which further simplifies the implementation.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11052010-141445
Date08 November 2010
CreatorsNarayanaswamy, Narendran
ContributorsSkavantzos, Alex, Srivastava, Ashok, Moreno, Juana
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-11052010-141445/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0086 seconds