Let G be a graph with vertex set V and no isolated vertices. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γ pr2 (G) is the minimum cardinality of a semipaired dominating set of G. We show that if G is a connected graph G of order n ≥ 3, then γ pr2 (G) ≤ 32 n, and we characterize the extremal graphs achieving equality in the bound.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-11321 |
Date | 01 January 2019 |
Creators | Haynes, Teresa W., Henning, Michael A. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0019 seconds