Return to search

Finer grained evaluation methods for better understanding of deep neural network representations

Établir des méthodes d'évaluation pour les systèmes d'intelligence artificielle (IA) est une étape importante pour précisément connaître leurs limites et ainsi prévenir les dommages qu'ils pourraient causer et savoir quels aspects devraient être améliorés. Cela nécessite d'être en mesure de dresser des portraits précis des limitations associées à un système d'IA donné. Cela demande l'accès à des outils et des principes fiables, transparent, à jour et faciles à utiliser. Malheureusement, la plupart des méthodes d'évaluation utilisées à ce jour ont un retard significatif par rapport aux performances toujours croissantes des réseaux de neurones artificiels. Dans cette thèse par articles, je présente des méthodes et des principes d'évaluation plus rigoureux pour obtenir une meilleur compréhension des réseaux de neurones et de leurs limitations.

Dans le premier article, je présente Representation Conditional Diffusion Model (RCDM), une méthode d'évaluation à l'état de l'art qui permet, à partir d'une représentation donnée -- par exemple les activations d'une couche donnée d'un réseau de neurones artificiels -- de générer une image. En utilisant les dernières avancées dans la génération d'images, RCDM permet aux chercheur·euse·s de visualiser l'information contenue à l'intérieur d'une représentation. Dans le deuxième article, j'introduis la régularisation par Guillotine qui est une technique bien connue dans la littérature sur l'apprentissage par transfert mais qui se présente différemment dans la littérature sur l'auto-apprentissage. Pour améliorer la généralisation à travers différentes tâches, on montre qu'il est important d'évaluer un modèle en coupant un certain nombre de couches. Dans le troisième article, j'introduis le score DéjaVu qui quantifie à quel point un réseau de neurones a mémorisé les données d'entraînement. Ce score utilise une petite partie d'une image d'entraînement puis évalue quelles informations il est possible d'inférer à propos du reste de l'image. Dans le dernier article, je présente les jeux de données photo-réalistes PUG (Photorealistic Unreal Graphics) que nous avons développés. Au contraire de données réelles, pour lesquelles générer des annotations est un processus coûteux, l'utilisation de données synthétiques offre un contrôle total sur la scène générée et sur les annotations. On utilise un moteur de jeux vidéo qui permet la synthèse d'images photo-réalistes de haute qualité, afin d'évaluer la robustesse d'un réseau de neurones pré-entraîné, ceci sans avoir besoin d'adapter ce réseau avec un entraînement additionnel. / Carefully designing benchmarks to evaluate the safety of Artificial Intelligent (AI) agents is a much-needed step to precisely know the limits of their capabilities and thus prevent potential damages they could cause if used beyond these limits. Researchers and engineers should be able to draw precise pictures of the failure modes of a given AI system and find ways to mitigate them. Drawing such portraits requires reliable tools and principles that are transparent, up-to-date, and easy to use by practitioners. Unfortunately, most of the benchmark tools used in research are often outdated and quickly fall behind the fast pace of improvement of the capabilities of deep neural networks. In this thesis by article, I focus on establishing more fine-grained evaluation methods and principles to gain a better understanding of deep neural networks and their limitations.

In the first article, I present Representation Conditional Diffusion Model (RCDM), a state-of-the-art visualization method that can map any deep neural network representation to the image space. Using the latest advances in generative modeling, RCDM sheds light on what is learned by deep neural networks by allowing practitioners to visualize the richness of a given representation. In the second article, I (re)introduce Guillotine Regularization (GR) -- a trick that has been used for a long time in transfer learning -- from a novel understanding and viewpoint grounded in the self-supervised learning outlook.
We show that evaluating a model by removing its last layers is important to ensure better generalization across different downstream tasks. In the third article, I introduce the DejaVu score which quantifies how much models are memorizing their training data. This score relies on leveraging partial information from a given image such as a crop, and evaluates how much information one can retrieve about the entire image based on only this partial content. In the last article, I introduce the Photorealistic Unreal Graphics (PUG) datasets and benchmarks. In contrast to real data for which getting annotations is often a costly and long process, synthetic data offers complete control of the elements in the scene and labeling. In this work, we leverage a powerful game engine that produces high-quality and photorealistic images to evaluate the robustness of pre-trained neural networks without additional finetuning.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/33390
Date08 1900
CreatorsBordes, Florian
ContributorsVincent, Pascal
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.003 seconds