Parkinson’s disease is a common neurodegenerative disorder caused by nigrostriatal dopamine loss, with motor deficiencies as the primary outcome. To increase the striatal dopamine content, patients are treated with 3,4-dihydroxyphenyl-l-alanine (l-DOPA). Beneficial relief of the motor symptoms is achieved initially, although the efficacy is lost with time and severe side effects, referred to as l-DOPA-induced dyskinesia, manifest in the majority of patients. Biological mechanisms responsible for the dopaminergic degeneration and the upcoming of dyskinesia are still unclear, and thus knowledge regarding critical factors for maintenance of the nigrostriatal system as well as neurochemical changes upon chronic l-DOPA is urgent. The present work aims at studying the importance of glial cell line-derived neurotrophic factor (GDNF) for nigrostriatal preservation, and the involvement of the dopaminergic, serotonergic, and glutamatergic systems in l-DOPA-induced dyskinesia. Effects from different levels of GDNF expression were evaluated on fetal mouse nigrostriatal tissue in a grafting study. In GDNF gene-deleted grafts, degeneration of the entire nigrostriatal system was evident at 6 months. In grafts with partial GDNF expression, significant loss of dopamine neurons was observed at later time points, although deviant findings in the dopamine integrity such as reduced innervation capacity and presence of intracellular inclusions-like structures were already present at earlier stages. The results emphasize GDNF as a crucial factor for long-term maintenance of the nigrostriatal system. Furthermore, striatal neurochemical alterations upon chronic l-DOPA treatment were studied in hemiparkinsonian rats using in vivo voltametry. The findings demonstrated impaired dopamine as well as glutamate releases in dyskinetic subjects, with no effects from acute l-DOPA administration. Conversely, in l-DOPA naïve dopamine-lesioned animals, dopamine release was increased and glutamate release attenuated upon a l-DOPA challenge. Moreover, l-DOPA-derived dopamine release was demonstrated to originate from serotonergic nerve fibers in the dopamine-lesioned striatum, an event that contributes significantly to dopamine levels also in intact striatum, and thus, is not a consequence from dopamine depletion. Assessment of serotonergic nerve fibers in l-DOPA treated animals and in a grafting study concluded that nerve fiber density was not affected by chronic l-DOPA treatment, nevertheless, dysfunction of this system can be suspected in dyskinetic animals since dopamine release was impaired and regulation of glutamate release by serotonergic 5-HT1A receptor activation was achieved in normal but not in dyskinetic animals. Furthermore, the selective serotonin reuptake inhibitor, fluoxetine, attenuated l-DOPA-induced dyskientic behavior, an effect that was demonstrated to be mediated via 5-HT1A receptors. In conclusion, dysmodulation of multiple transmitter systems is evident in LID.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-64149 |
Date | January 2013 |
Creators | Nevalainen, Nina |
Publisher | Umeå universitet, Histologi med cellbiologi, Umeå : Umeå universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 1544 |
Page generated in 0.0017 seconds