Nanoparticle-functionalized electrodes have attracted attention in areas such as energy production and storage, sensing, and electrosynthesis. The electrochemical properties of these electrodes depend upon the nanoparticle properties, e.g., core size, core morphology, surface chemistry, as well as the structure of the nanoparticle/electrode interface, including the coverage on the electrode surface, choice of electrode support, and the interface between the nanoparticle and the electrode support. Traditionally used methods of producing nanoparticle-functionalized electrodes lack sufficient control over many of these variables, particularly the nanoparticle/electrode interface.
Tethering nanoparticles to electrodes with molecular linkers is a strategy to fabricate nanoparticle-functionalized electrodes that provides enhanced control over the nanoparticle/electrode structure. However, many existing tethering methods are done on catalytically active electrode supports, which makes isolating the electrochemical activity of the nanoparticle challenging. Furthermore, previous work has focused on larger nanoparticles, yet smaller nanoparticles with core diameters less than 2.5 nm are of interest due to their unique structural and electronic properties. This dissertation addresses both of these gaps, exploring small nanoparticle electrocatalysts that are molecularly tethered to catalytically inert electrodes.
This dissertation first reviews and compares the methods of fabricating nanoparticle-functionalized electrodes with a defined molecular interface in the context of relevant attributes for electrochemical applications. Next, a new platform approach to bind small gold nanoparticles to catalytically inert boron doped diamond electrodes through a defined molecular interface is described, and the influence of the nanoparticle/electrode interface on the electron transfer properties of these materials is evaluated. The next two studies build upon this platform to evaluate molecularly tethered nanoparticles as oxygen electroreduction catalysts. The first of these two describes the systematic study of atomically precise small gold clusters, highlighting the influence of atomic level differences in the core size and the electrode support material on the catalytic properties. The second study extends the platform approach to study small bimetallic silver-gold nanoparticles produced on the electrode surface and highlights the influence of the structural arrangement of the metals on the catalytic activity. Finally, future opportunities for the field of molecularly tethered nanoparticle-functionalized electrodes are discussed.
This dissertation includes previously published and unpublished co-authored material. / 2019-01-27
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/23723 |
Date | 06 September 2018 |
Creators | Young, Samantha |
Contributors | Boettcher, Shannon |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0015 seconds