Return to search

Study on growth mechanism and characteristics of transparent conductive boron doped diamond thin films

This thesis presents the fabrication of transparent conductive Boron-Doped CVD diamond (BDD) thin film with the appropriate processing parameters. The BDD shows the transmittance in the visible wavelength and good electrical conductivity. The depositing rate of Diamond films yields 0.37 £gm per hour with Hydrogen, Argon, Methane and oxygen as gas sources, and B(OCH3)3 was used as the doping source. Microwave plasma chemical vapor deposition (MWCVD) was performed for the BDD deposition. Also, PECVD was applied to grow diamond-like Carbon (DLC) film on silicon as substrate. Through systematical experiments, the influence of carrier gas flow rates of B(OCH3)3, the variation of ratio of Argon, and growth pressure of BDD on the transmittance in the visible light and electrical conductivity has been studied. In addition, dc bias was applied to synthesize diamond films and extend long depositing time shows the stable growth rate of diamond films. The thickness of BDD films increases and acquired more than 60% optical transmittance. BDD samples were analyzed by Raman Spectroscopy for the diamond quality, N & K Analyzer for the film thickness and optical properties. Van Der Pauw I-V Measurement and Hall Measurement were analyzed p-type diamond films carrier mobility, carrier concentration, electrical resistivity.
By increasing Argon and applying negative dc bias can improve the growth rate and transmittance of diamond films. And the quality of diamond films could be improved by the coating of DLC on Si substrates. This work has achieved fabricating a transparent conducting BDD successfully.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1128112-160524
Date28 November 2012
CreatorsYeh, Kuan-Hung
ContributorsTsung-Ming Tsai, Mei-Ling Wu, Tai-Fa Young, Ting-Chang Chang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1128112-160524
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0017 seconds