Return to search

Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction / Laserscanning unter Wasser - Refraktive Kalibrierung, Selbstkalibrierung und Kartierung zur 3D Rekonstruktion

There is great interest in affordable, precise and reliable metrology underwater:
Archaeologists want to document artifacts in situ with high detail.
In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport.
Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential.
While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task.
Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption.
However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems.

This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water.
It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector.
The prototype is configured with a motorized yaw axis for capturing scans from a tripod.
Alternatively, it is mounted to a moving platform for mobile mapping.
The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction.
For highest accuracy, the refraction at the individual media interfaces must be taken into account.
This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model.
In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects.
As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light.

The system was successfully deployed in various configurations for both static scanning and mobile mapping.
An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance.
Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection.
Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle.
RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color.
3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks.
The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective. / Das Interesse an präziser, zuverlässiger und zugleich kostengünstiger Unterwassermesstechnik ist groß.
Beispielsweise wollen Archäologen Artefakte in situ mit hoher Detailtreue dokumentieren und in der Meeresforschung benötigen Biologen Messwerkzeuge zur Beobachtung des Korallenwachstums.
Auch Geologen sind auf Messdaten angewiesen, um Sedimenttransporte zu modellieren.
Darüber hinaus ist für die Errichtung von Offshore-Bauwerken, sowie deren Wartung und Inspektion eine millimetergenaue Vermessung von vorhandenen Strukturen und Defekten unerlässlich.
Während die Digitalisierung einzelner Objekte und ganzer Areale an Land gut erforscht ist und verschiedene Standardmethoden, wie zum Beispiel Structure from Motion oder terrestrisches Laserscanning, regelmäßig eingesetzt werden, ist die präzise und hochauflösende Unterwasservermessung nach wie vor eine komplexe und schwierige Aufgabe.
Die Anwendung optischer Messtechnik im Wasser ist aufgrund der eingeschränkten Sichttiefe durch Trübung und Lichtabsorption eine Herausforderung.
Optische Unterwasserscanner bieten jedoch Vorteile hinsichtlich der erreichbaren Auflösung und Genauigkeit gegenüber akustischen Systemen.

In dieser Arbeit werden ein Unterwasser-Laserscanning-System und die Algorithmen zur Erzeugung von 3D-Scans mit hoher Punktdichte im Wasser vorgestellt.
Es basiert auf Lasertriangulation und die optischen Hauptkomponenten sind eine Unterwasserkamera und ein Kreuzlinienlaserprojektor.
Das System ist mit einer motorisierten Drehachse ausgestattet, um Scans von einem Stativ aus aufzunehmen.
Alternativ kann es von einer beweglichen Plattform aus für mobile Kartierung eingesetzt werden.
Das Hauptaugenmerk liegt auf der refraktiven Kalibrierung der Unterwasserkamera und des Laserprojektors, der Bildverarbeitung und der 3D-Rekonstruktion.
Um höchste Genauigkeit zu erreichen, muss die Brechung an den einzelnen Medienübergängen berücksichtigt werden.
Dies wird durch ein physikalisch-geometrisches Kameramodell, das auf einer analytischen Beschreibung der Strahlenverfolgung basiert, und ein optimierungsbasiertes Kalibrierverfahren erreicht.
Neben dem Scannen von Unterwasserstrukturen wird in dieser Arbeit auch die 3D-Erfassung von teilweise im Wasser befindlichen Strukturen und die Korrektur der dabei auftretenden Brechungseffekte vorgestellt.
Da die Kalibrierung im Wasser komplex und zeitintensiv ist, wird die Übertragung einer Kalibrierung des Scanners in Luft auf die Bedingungen im Wasser ohne Neukalibrierung, sowie die Selbstkalibrierung für Lichtschnittverfahren untersucht.

Das System wurde in verschiedenen Konfigurationen sowohl für statisches Scannen als auch für die mobile Kartierung erfolgreich eingesetzt.
Die Validierung der Kalibrierung und der 3D-Rekonstruktion anhand von Referenzobjekten und der Vergleich von Freiformflächen in klarem Wasser zeigen das hohe Genauigkeitspotenzial im Bereich von einem Millimeter bis weniger als einem Zentimeter in Abhängigkeit von der Messdistanz.
Die mobile Unterwasserkartierung und Bewegungskompensation anhand visuell-inertialer Odometrie wird mit einem neuen optischen Unterwasserscanner auf Basis der Streifenprojektion demonstriert.
Dabei ermöglicht die kontinuierliche Registrierung von Einzelscans die Erfassung von 3D-Modellen von einem Unterwasserfahrzeug aus.
Mit Hilfe von parallel aufgenommenen RGB-Bildern werden dabei farbige 3D-Punktwolken der Unterwasserszenen erstellt.
Diese 3D-Karten dienen beispielsweise dem Bediener bei der Fernsteuerung von Unterwasserfahrzeugen und bilden die Grundlage für Offshore-Inspektions- und Vermessungsaufgaben.
Die fortschreitende Automatisierung der Messtechnik wird somit auch eine Verwendung durch Nichtfachleute ermöglichen und gleichzeitig die Erfassungszeit erheblich verkürzen und die Genauigkeit verbessern, was die Vermessung im Wasser kostengünstiger und effizienter macht.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:32269
Date January 2023
CreatorsBleier, Michael
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds