This paper studies a method for active electrohydraulic force compensation in industrial scale high power applications. A valve controlled cylinder moves a mass using the force of inertia to compensate for the reaction forces of an industrial process. Two strategies for force compensation are developed and investigated in a 160 ton clamping unit of an injection moulding machine to significantly reduce the excitation. Results of the different strategies are shown and evaluated. Advantages and drawbacks of the developed electrohydraulic force compensation are discussed.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29365 |
Date | January 2016 |
Creators | Radermacher, Tobias, Lübbert, Jan, Weber, Jürgen |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 2, pp. 353-366 |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-196941, qucosa:29238 |
Page generated in 0.0024 seconds