Return to search

Drone Detection and Classification using Machine Learning and Sensor Fusion

This thesis explores the process of designing an automatic multisensordrone detection system using machine learning and sensorfusion. Besides the more common video and audio sensors, the systemalso includes a thermal infrared camera. The results show thatutilizing an infrared sensor is a feasible solution to the drone detectiontask, and even with slightly lower resolution, the performance isjust as good as a video sensor. The detector performance as a functionof the sensor-to-target distance is also investigated. Using sensor fusion, the system is made more robust than the individualsensors. It is observed that when using the proposed sensorfusion approach, the output system results are more stable, and thenumber of false detections is mitigated. A video dataset containing 650 annotated infrared and visible videosof drones, birds, airplanes and helicopters is published. Additionally,an audio dataset with the classes drones, helicopters and backgroundsis also published.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-42141
Date January 2020
CreatorsSvanström, Fredrik
PublisherHögskolan i Halmstad, Akademin för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds