Return to search

Evaporative Vapor Deposition for Depositing 2D Materials

The development of a new deposition technique called evaporative vapor deposition (EVD) is reported, allowing deposition and formation of atomically-thin, large area materials on arbitrary substrates. This work focuses on the highly popular monolayer material – graphene oxide (GO). A droplet of a GO solution is formed on a heated polymer substrate, and maintained at steady-state evaporation (all droplet parameters are held constant over time). The polymer substrate is laser patterned to control the droplet's contact line dynamics and the droplet's contact angle is maintained using a computer controlled syringe pump. A room temperature silicon wafer is translated through the vapor field of the evaporating GO droplet using a computer controlled translation stage. Dropwise condensation formed on the silicon wafer is monitored using both optical and infrared cameras. The condensation rate is measured to be ~50pL/mm2?s – 500 pL/mm2?s and dependent on the substrate translation speed and height difference between the droplet's apex and substrate surface. Nano-sized GO flakes carried through the vapor phase are captured in the condensate, depositing on the translating wafer. Deposition rate is dependent on the stability of the solution and droplet condensate size. Characterization with Raman spectroscopy show expected shifts for graphene/graphite. The presented EVD technique is promising toward formation of large scale 2D materials with applications to developing new technologies.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2421
Date01 January 2015
CreatorsGleason, Kevin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.008 seconds