INTRODUCTION: Cytochrome P450 2B (CYP2B) is a drug-metabolizing enzyme subfamily found in both the brain and liver, which metabolizes clinical drugs, drugs of abuse (e.g. nicotine), toxicants and endogenous neurochemicals. Brain CYP2B’s role in the local metabolism of centrally acting substrates is important to investigate because of its ability to metabolize a variety of centrally active substrates. Additionally, CYP2B regulation by genetics, and exposure to xenobiotics, results in great inter-individual differences in the brain expression of this enzyme. METHODS: We investigated the time-course of rat brain CYP2B induction after chronic nicotine treatment. Using the rat model of brain CYP2B induction, combined with intracerebroventricular (ICV) inhibition of CYP2B, we assessed the effects of brain CYP2B in the response to the anaesthetic substrate, propofol. We also investigated the role of brain CYP2B-mediated activation of the pesticide chlorpyrifos on its neurotoxicity. RESULTS: Nicotine’s induction of rat brain CYP2B was long lasting, returning to basal levels by day 7, and was unaffected by nicotinic receptor blockade. Induction of CYP2B in rat brain, by chronic nicotine treatment, reduced the anaesthetic efficacy of propofol, through increased brain CYP2B-mediated metabolic inactivation. Inhibition of brain CYP2B, using mechanism based inhibitors of the enzyme, inhibited both basal and induced brain CYP2B activity, and prolonged propofol sleep time by reducing the local brain inactivation of the anaesthetic. Inhibition of rat brain, and not hepatic, CYP2B was able to effectively block local brain production of the toxic chlorpyrifos oxon, significantly attenuating the reductions in brain acetylcholinesterase activity and body temperature. Additionally, inhibition of brain CYP2B also significantly reduced the behavioural toxicity after chlorpyrifos exposure in a chlorpyrifos (CP) dose- and time-dependent manner. CONCLUSION: These studies indicate that rat brain CYP2B enzymes are active in vivo and play a meaningful role in the local metabolism of, and the response to, centrally acting substrates (i.e. propofol, chlorpyrifos). These data provide a first demonstration of the important role that brain CYP-mediated metabolism plays in the response to centrally acting substrates (i.e. clinical drugs, toxicants, endogenous neurochemicals), potentially contributing to the inter-individual variability seen in human responses to centrally active drugs and toxicants.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/34080 |
Date | 17 December 2012 |
Creators | Khokhar, Jibran Y. |
Contributors | Tyndale, Rachel |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds