Return to search

Visualization of Protein Activity Status in situ Using Proximity Ligation Assays

In 2001 the human proteome organization (HUPO) was created with the ambition to identify and characterize all proteins encoded in the human genome according to several criteria; their expression levels in different tissues and under different conditions; the sub-cellular localization; post-translational modifications; interactions, and if possible also the relationship between their structure and function.When the knowledge of different proteins and their potential interactions increases, so does the need for methods able to unravel the nature of molecular processes in cells and organized tissues, and ultimately for clinical use in samples obtained from patients. The in situ proximity ligation assay (in situ PLA) was developed to provide localized detection of proteins, post-translational modifications and protein-protein interactions in fixed cells and tissues. Dual recognition of the target or interacting targets is a prerequisite for the creation of a circular reporter DNA molecule, which subsequently is locally amplified for visualization of individual protein molecules in single cells. These features offer the high sensitivity and selectivity required for detection of even rare target molecules. Herein in situ PLA was first established and then employed as a tool for detection of both interactions and post-translational modifications in cultured cells and tissue samples. In situ PLA was also adapted to high content screening (HCS) for therapeutic effects, where it was applied for cell-based drug screening of inhibitors influencing post-translational modifications. This was performed using primary cells, paving the way for evaluation of drug effects on cells from patient as a diagnostic tool in personalized medicine. In conclusion, this thesis describes the development and applications of in situ PLA as a tool to study proteins, post-translational modifications and protein-protein interactions in genetically unmodified cells and tissues, and for clinical interactomics.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-131934
Date January 2010
CreatorsJarvius, Malin
PublisherUppsala universitet, Molekylära verktyg, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 609

Page generated in 0.0023 seconds