Return to search

Biochemical properties and substrate reactivities of Aquifex Aeolicus Ribonuclease III

Ribonuclease III is a highly-conserved bacterial enzyme that cleaves double-stranded (ds) RNA structures, and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, those crystals involved complexes containing either cleaved RNA, or a mutant RNase III that is catalytically inactive. In addition, neither the biochemical properties of A. aeolicus (Aa)-RNase III, nor the reactivity epitopes of its cognate substrates are known. The goal of this project is to use Aa-RNase III, for which there is atomic-level structural information, to determine how RNase III recognizes its substrates and selects the target site. I first purified recombinant Aa-RNase III and defined the conditions that support its optimal in vitro catalytic activity. The catalytic activity of purified recombinant Aa-RNase III exhibits a temperature optimum of 70-85°C, a pH optimum of 8.0, and with either Mg2+ or Mn2+ supports efficient catalysis. Cognate substrates for Aa-RNase III were identified and their reactivity epitopes were characterized, including the specific bp sequence elements that determine processing reactivity and selectivity. Small RNA hairpins, based on the double-stranded structures associated with the Aquifex 16S and 23S rRNA precursors, are cleaved in vitro at sites that are consistent with production of the immediate precursors to the mature rRNAs. Third, the role of the dsRBD in scissile bond selection was examined by a mutational analysis of the conserved interactions of RNA binding motif 1 (RBM1) with the substrate proximal box (pb). The individual contributions towards substrate recognition were determined for conserved amino acid side chains in the RBM1. It also was shown that the dsRBD plays key dual roles in both binding energy and selectivity, through RBM1 responsiveness to proximal box bp sequence. The dsRBD is specifically responsive to an antideterminant (AD) bp in pb position 2. The relative structural rigidity of both dsRNA and dsRBD rationalizes the strong effect of an inhibitory bp at pb position 2: disruption of one RBM1 side chain interaction can effectively disrupt the other RBM1 side chain interactions. Finally, a cis-acting model was developed for subunit involvement in substrate recognition by RNase III. Structurally asymmetric mutant heterodimers of Escherichia coli (Ec)-RNase III were constructed, and asymmetric substrates were employed to reveal how RNase III can bind and deliver hairpin substrates to the active site cleft in a pathway that requires specific binding configurations of both enzyme and substrate. / Chemistry

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2370
Date January 2012
CreatorsShi, Zhongjie
ContributorsNicholson, Allen W., Schafmeister, Christian, Zdilla, Michael J., 1978-, Waring, Richard B.
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format163 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/2352, Theses and Dissertations

Page generated in 0.002 seconds