Inflammatory bowel disease is a serious condition with an incomplete etiology and pathogenesis. In this thesis, a mouse model of sodium dextran sulfate-induced inflammation was used to study different changes in the metabolism of germ-free and conventionally raised mice due to the development of the inflammatory process. NMR metabolomics of fecal, urine and serum samples, combined with uni- and multivariate statistical analysis, were used to characterize the changes. It was shown that the metabolic signature differs between germ-free and conventional mice. In germ-free mice, significant amounts of carbohydrates were found in feces. Their levels decreased during inflammation as they were excreted in urine. In contrast to conventional mice, germ-free mice also excreted large amounts of amino acids in feces during the developing inflammation. Disorders of sugar and protein metabolism found in germ-free mice indicate severe malnutrition caused by inflammation. The results show that the presence of a microbiome represents a protective mechanism against significant disruption in the body. A stability study of fecal extracts of healthy conventionally colonized mice confirmed that none of the identified and quantified metabolites showed significant systemic changes in several consecutively collected...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:452360 |
Date | January 2021 |
Creators | Nazmutdinova, Anastasiia |
Contributors | Kuzma, Marek, Cahová, Monika |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds