Return to search

Single And Dual Band Quantum Well Infrared Photodetector Focal Plane Arrays On Inp Substrates

Excellent uniformity and mature material properties of Quantum Well Infrared Photodetectors (QWIPs) have allowed the realization of large format, low cost staring focal plane arrays (FPAs) in various thermal imaging bands. AlGaAs/InGaAs and AlGaAs/GaAs materials systems have been the standard systems for the construction of mid-wavelength infrared (MWIR) and long-wavelength (LWIR) QWIPs. However AlGaAs/GaAs QWIP FPAs suffer from low quantum and conversion efficiencies under high frame rate (low integration time) and/or low background conditions limiting the application area of standard QWIPs. This thesis focuses on the growth and development of InP based single and dual band QWIP FPAs. We experimentally demonstrate that QWIPs on InP substrates provide important advantages that can be utilized to overcome the bottlenecks of the standard GaAs based QWIP technology.
InP/InGaAs material system is an alternative to AlGaAs/GaAs for LWIR QWIPs. We demonstrate a large format (640x512) LWIR QWIP FPA constructed with strained InP/InGaAs material system. The strain introduced to the structure shifts the cut-off wavelength from ~8.5 to 9.7 &micro / m with lambdap=8.9 &micro / m. The FPA fabricated with the 40-well epilayer structure yielded a peak quantum efficiency as high as 12% with a broad spectral response (&amp / #8710 / lambda/lambdap=17%). The peak responsivity of the FPA pixels is larger than 1.4 A/W with conversion efficiency as high as 20% in the bias region where the detectivity is reasonably high (2.6x1010 cmHz1/2/W, f/1.5, 65 K). The FPA providing a background limited performance temperature higher than 65 K (f/1.5) satisfies the requirements of most low integration time/low background applications where AlGaAs/GaAs QWIPs cannot be utilized due to low conversion efficiency and read-out circuit noise limited sensitivity. Noise equivalent temperature differences (NETD) of the FPA are as low as 19 and 40 mK with integration times as short as 1.8 ms and 430 &micro / s (f/1.5, 65 K), respectively.

We also experimentally demonstrate that the cut-off wavelength of MWIR AlInAs/InGaAs QWIPs can be tuned in a sufficiently large range in the MWIR atmospheric window by only changing the quantum well (QW) width at the lattice matched composition. The cut-off wavelength can be shifted up to ~5.0 &micro / m with a QW width of 22 &Aring / in which case very broad spectral response (&amp / #8710 / lambda/lambdap=~30%) and a reasonably high peak detectivity is achievable leading to a NETD as low as 14 mK (f/2) with 25 &micro / m pitch in a 640x512 FPA.
The advantages of InP based MWIR and LWIR single band QWIPs were combined by growing and fabricating a mid format (320x256) dual band QWIP FPA. The FPA provided NETD (f/1.5, 65 K, 19 ms) values of 27 mK and 29 mK in the MWIR and LWIR modes with an impressively low DC signal nonuniformity of ~ 4%.
The results clearly demonstrate that InP based material systems display high potential for MWIR and LWIR single band and MWIR/LWIR dual band QWIP FPAs needed by third generation thermal imagers by overcoming the limitations of the standard GaAs based QWIPs under high frame rate (low integration time) and/or low background conditions.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12611601/index.pdf
Date01 February 2010
CreatorsEker, Suleyman Umut
ContributorsBesikci, Cengiz
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0022 seconds