Return to search

Modelling the combustion in a dual fuel HCCI engine. Investigation of knock, compression ratio, equivalence ratio and timing in a Homogeneous Charge Compression Ignition (HCCI) engine with natural gas and diesel fuels using modelling and simulation.

This thesis is about modelling of the combustion and emissions of dual fuel HCCI engines for design of “engine combustion system”. For modelling the combustion first the laminar flamelet model and a hybrid Lagrangian / Eulerian method are developed and implemented to provide a framework for incorporating detailed chemical kinetics. This model can be applied to an engine for the validation of the chemical kinetic mechanism. The chemical kinetics, reaction rates and their equations lead to a certain formula for which the coefficients can be obtained from different sources, such as NASA polynomials [1]. This is followed by study of the simulation results and significant findings. Finally, for investigation of the knock phenomenon some characteristics such as compression ratio, fuel equivalence ratio, spark timing and their effects on the performance of an engine are examined and discussed. The OH radical concentration (which is the main factor for production of knock) is evaluated with regard to adjustment of the above mentioned characteristic parameters. In the second part of this work the specification of the sample engine is given and the results obtained from simulation are compared with experimental results for this sample engine, in order to validate the method applied in AVL Fire software. This method is used to investigate and optimize the effects of parameters such as inlet temperature, fuels ratio, diesel fuel injection timing, engine RPM and EGR on combustion in a dual fuel HCCI engine. For modelling the dual fuel HCCI engine AVL FIRE software is applied to simulate the combustion and study the optimization of a combustion chamber design. The findings for the dual fuel HCCI engine show that the mixture of methane and diesel fuel has a great influence on an engine's power and emissions. Inlet air temperature has also a significant role in the start of combustion so that inlet temperature is a factor in auto-ignition. With an increase of methane fuel, the burning process will be more rapid and oxidation becomes more complete. As a result, the amounts of CO and HC emissions decrease remarkably. With an increase of premixed ratio beyond a certain amount, NOX emissions decrease. With pressure increases markedly and at high RPM, knock phenomenon is observed in HCCI combustion.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/7344
Date January 2013
CreatorsGhomashi, Hossein
ContributorsEbrahimi, Kambiz M., Olley, Peter
PublisherUniversity of Bradford, School of Engineering Design and Technology
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0024 seconds