Muscle stem cells self-renew to maintain the long-term capacity for skeletal muscles to regenerate. However, the homeostatic regulation of muscle stem cell self-renewal is poorly understood. By utilizing high-throughput screening and transcriptomic approaches, we identify the critical function of dystrophin, the epidermal growth factor receptor (EGFR), and fibronectin in the establishment of cell polarity and in determining symmetric and asymmetric modes of muscle stem cell self-renewal. These findings reveal an orchestrated network of paracrine signaling that regulate muscle stem cell homeostasis during regeneration and have profound implications for the pathogenesis and development of therapies for Duchenne muscular dystrophy.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35207 |
Date | January 2016 |
Creators | Wang, Yu Xin |
Contributors | Rudnicki, Michael |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds