This work deals with the classification methods used in the knowledge discovery from data process and discusses the possibilities of their validation and comparison. Through experiments, the work focuses on the analysis of four selected methods: Naive Bayes classificator, decision tree, neural network and SVM. Factors influencing basic characteristics such as training speed, classification speed, accuracy are examined. A part of the thesis is a desktop application, which is a tool for training, testing and validation of individual methods. Eleven reference data sets are selected for experimental purposes. At the end of this work experimental results of comparison and observed characteristics of classification methods are summarized.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:403169 |
Date | January 2019 |
Creators | Juríček, Jakub |
Contributors | Zendulka, Jaroslav, Burgetová, Ivana |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0025 seconds