Šiame magistriniame darbe yra nagrinėjami nepriklausomi vienodai pasiskirstę atsitiktiniai dydžiai, turintys visus absoliutinius baigtinius momentus. Magistrinio darbo tikslas - atlikti konvergavimo greičio į normalųjį dėsnį įvertinimą. Darbą sudaro aštuoni skyriai. Įvade aprašoma problema ir visi tyrimo parametrai. Antrasis skyrius skirtas teoriniai analizei. Šiame skyriuje pateikiamos svarbiausios teorinės žinios ir metodai, kurie bus taikomi magistrinio darbo uždaviniams bei tikslams įgyvendinti. Trečiame skyriuje nagrinėjami kumuliantai Bernulio schemos atveju, o ketvirtame - analizuojamas Čebyšovo asimptotinis skleidinys ir pasinaudojus matematiniu paketu Maple, grafiniu būdu, tyrinėjamas jo konvergavimas. Aproksimacijos normaliuoju dėsniu tikslumui įvertinti naudojamas charakteristinių funkcijų metodas, todėl penktasis skyrius yra skiriamas suglodinimo nelygybių patikslinimui. Šeštame skyriuje, pasinaudojus turimais rezultatais, realizuojamas magistrinio darbo tikslas, o septintame - patikrinamas absoliutinės paklaidos įvertis Bernulio schemos atveju. Išvados ir rezultatai glaustai išdėstomi aštuntame skyriuje. / This master thesis considers independiant and identically distributed random variables, having absolute finite moments. The main task is to determine error estimate of the normal approximation. The work consists of eight chapters. In the introduction are considered problems and all subjects of research. The second chapter is designed for the theory analysis. Here are placed the main theoretical studies and methods that are used to solve the aims of the master thesis. The third chapter is intended to deal with cumulants in case of the Bernoulli’s distribution, the fourth one - is analyzing the Čebyšova’s asymptotic expansion and it convergence with the help of the mathematical package Maple. The method of characteristic’s functions is used to find the remainder term of the normal approximation, so the fifth chapter is designed to specify smoothing inequalities. Based on these results, the main task of the master thesis was obtained and specified in the sixth chapter. In the seventh one the error estimate in case of Bernoulli’s distribution, was examined with a mathematical package Maple. The short conclusions and results are placed in the eighth chapter.
Identifer | oai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2008~D_20080619_124043-00846 |
Date | 19 June 2008 |
Creators | Kasparavičiūtė, Aurelija |
Contributors | Padvelskis, Kazimieras, Sapagovas, Jonas, Saulis, Leonas, Vytautas Magnus University |
Publisher | Lithuanian Academic Libraries Network (LABT), Vytautas Magnus University |
Source Sets | Lithuanian ETD submission system |
Language | Lithuanian |
Detected Language | Unknown |
Type | Master thesis |
Format | application/pdf |
Source | http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080619_124043-00846 |
Rights | Unrestricted |
Page generated in 0.0021 seconds