Return to search

Réseau bayésien dynamique hybride : application à la modélisation de la fiabilité de systèmes à espaces d'états discrets / hybrid dynamic bayesian network : application to reliability modeling of discrete state spaces systems

L'analyse de fiabilité fait partie intégrante de la conception et du fonctionnement du système, en particulier pour les systèmes exécutant des applications critiques. Des travaux récents ont montré l'intérêt d'utiliser les réseaux bayésiens dans le domaine de la fiabilité, pour modélisation la dégradation d'un système. Les modèles graphiques de durée sont un cas particulier des réseaux bayésiens, qui permettent de s'affranchir de la propriété markovienne des réseaux bayésiens dynamiques. Ils s'adaptent aux systèmes dont le temps de séjour dans chaque état n'est pas nécessairement distribué exponentiellement, comme c'est le cas dans la plupart des applications industrielles. Des travaux antérieurs ont toutefois montré des limitations à ces modèles en terme de capacité de stockage et de temps de calcul, en raison du caractère discret de la variable temps de séjour. Une solution pourrait consister à considérer une variable de durée continue. Selon les avis d'experts, les variables de temps de séjour suivent une distribution de Weibull dans de nombreux systèmes. L'objectif de la thèse est d'intégrer des variables de temps de séjour suivant une distribution de Weibull dans un modèle de durée graphique en proposant une nouvelle approche. Après une présentation des réseaux bayésiens, et plus particulièrement des modèles graphiques de durée et leur limitation, ce rapport s'attache à présenter le nouveau modèle permettant la modélisation du processus de dégradation. Ce nouveau modèle est appelé modèle graphique de durée hybride Weibull. Un algorithme original permettant l'inférence dans un tel réseau a été mis en place. L'étape suivante a été la validation de l'approche. Ne disposant pas de données, il a été nécessaire de simuler des séquences d'états du système. Différentes bases de données ainsi construites ont permis d'apprendre d'un part un modèle graphique de durée, et d'autre part un modèle graphique de durée hybride-Weibull, afin de les comparer, que ce soit en terme de qualité d’apprentissage, de qualité d’inférence, de temps de calcul, et de capacité de stockage / Reliability analysis is an integral part of system design and operation, especially for systems running critical applications. Recent works have shown the interest of using Bayesian Networks in the field of reliability, for modeling the degradation of a system. The Graphical Duration Models are a specific case of Bayesian Networks, which make it possible to overcome the Markovian property of dynamic Bayesian Networks. They adapt to systems whose sojourn-time in each state is not necessarily exponentially distributed, which is the case for most industrial applications. Previous works, however, have shown limitations in these models in terms of storage capacity and computing time, due to the discrete nature of the sojourn time variable. A solution might be to allow the sojourn time variable to be continuous. According to expert opinion, sojourn time variables follow a Weibull distribution in many systems. The goal of this thesis is to integrate sojour time variables following a Weibull distribution in a Graphical Duration Model by proposing a new approach. After a presentation of the Bayesian networks, and more particularly graphical duration models, and their limitations, this report focus on presenting the new model allowing the modeling of the degradation process. This new model is called Weibull Hybrid Graphical Duration Model. An original algorithm allowing inference in such a network has been deployed. Various so built databases allowed to learn on one hand a Graphical Duration Model, and on an other hand a Graphical Duration Model Hybrid - Weibull, in order to compare them, in term of learning quality, of inference quality, of compute time, and of storage space

Identiferoai:union.ndltd.org:theses.fr/2019PESC2014
Date01 July 2019
CreatorsPetiet, Florence
ContributorsParis Est, Bouillaut, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds