Return to search

Interpretation of Railway Track Alignment Measurements in a Geodynamic Perspective

The development in society means that infrastructure like ballasted railway systems are facing challenges due to request for increased number of high-speed trains and heavier freight trains. This implies that ballasted railways get an increased impact from larger dynamic loads. The question is how the ballasted railways are today affected by dynamic loading and how will an increase in train speed and weight change the soil behaviour within the railway embankment.  A method of investigating dynamic soil behaviour is via geophysical measurements. Accelerometers are commonly used for vibration measurements and by installing them on trains are measurements possible to perform for complete railway sections. The knowledge of expected natural frequencies for various track components and soil layers are essential when considering frequency based analysis of vibration measurements. Thus, a frequency based analysis of accelerometer measurements from track recording coaches enables a possible method for analysing the impact of dynamic loads on underlying soil materials with means of a knowledge of expected natural frequencies for various track components and soil layers. Importance to study frequency content of ground motions became more relevant after the Mexico City earthquake 1985 i.e. studies on this specific earthquake revealed amplification of ground motions due to a long duration of shaking and resonance of soil deposits and furthermore causing damage to buildings whose natural period was the same as the period of ground motion. Thus, if we consider a railway with long train sets running along the railway line. Long durations of shaking of the ground can occur as well as a possible resonance of various soil layers leading to changes in material properties. An interesting finding regarding vibration measurements conducted on a track recording coach show that after Fast Fourier Transformation of the measured vibration data, a frequency spectrum analysis indicate possibilities to detect resonance of the ballast layer in the railway embankment. Therefore, this thesis focus on frequency based analysis of the ballast layer were indications of changes in shear modulus of ballast is seen with means of frequency spectrum and theoretical knowledge of the change in shear modulus in ballast material under cyclic loading and increased shear strain. The thesis consists of two main parts, first is the construction of the so-called frequency-based analysis method of track alignment measurements in a geodynamic perspective and the second part is application of the frequency-based method on a case study. Thus, the scientific contribution of this thesis is to increase knowledge of track alignment measurements in the geotechnical field and to provide a frequency based analysis method of track alignment measurements in a geodynamic perspective for evaluation of soil properties. For the actual case study two different railway sections in Sweden is chosen to enable a comparison, especially when these sections differ with respect to one having only a ballast layer and subgrade and one having ballast, sub ballast and subgrade. Thus, the section with only ballast and subgrade enable a clearer analysis since these layers have large difference in natural frequency. First section is located at Tolikberget in the north part of Sweden and second one between Stenkumla and Dunsjö in south of Sweden. From the analysis of the selected sections it is possible to see indications from the frequency spectrum that the vibration measurements capture the natural frequencies of ballast material associated to the maximum shear modulus and to varying degrees of reduced shear modulus due to increased shear strain. Thus, it can be concluded that vibration measurements conducted on track recording coaches have potential to be used for studies of changes in ballast materials dynamic properties.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-83499
Date January 2021
CreatorsMajala, Jonas
PublisherLuleå tekniska universitet, Geoteknologi, Luleå
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.0025 seconds