Helical membrane proteins comprise one third of the expressed proteins encoded in a typical genome. Other membrane proteins are typically beta sheets. Their function varies from pore formation, signaling to antimicrobial activity. They are also capable of transporting large cargo such as proteins or nucleic acids across the cell membrane. Recently, peptides have emerged as promising tools in drug delivery. Membrane proteins can be synthesized chemically or expressed and isotopically labeled in bacteria, isolated, purified and reconstituted into fully hydrated lipid bilayers. The bilayer orientation is kept mechanically by putting them between glass plates. While interacting with these bilayers they exhibit a variety of configurations depending on the lipids composition and thickness. Solid-state Nuclear Magnetic Resonance (NMR) on oriented bilayers is one way to access the topology of peptides associated with phospholipid membranes. Oriented membrane protein are difficult to study with analytical techniques because of their poor solubility outside the lipid membrane, difficulty of expression in bacteria in big quantities, difficulty to crystallize, and they are too large for solution NMR study. The intensity of an NMR signal depends on several factors such as polarization P and magnetic field magnitude B0. One of the major drawbacks of NMR spectroscopy is low sensitivity. This is caused by the small magnetic moment of the nuclear spins which results in a modest Zeeman splitting of the nuclear spin energy levels and therefore in a limited Boltzmann Polarization. The aim of this project is to obtain a better signal from membrane proteins. Thus a Low temperature (LT) solid state NMR with Dynamic Nuclear Polarization (DNP) probe head was created. DNP is an ingenious technique that is used to transfer polarization from highly polarized targets to less polarized nuclei using microwave irradiation. Microwaves will excite selectively the electron spins which will transfer their polarization to the pool of proton nuclei, the proton NMR signal can be enhanced by 660 times. A probe head for DNP enhanced solid state NMR at 100 K and 9.4 T is described. A probe head includes the mechanical piece that holds the sample in the magnetic center of the NMR magnet. It is a tunable antenna that irradiates and detects the rf fields used in NMR. The centerpiece of the probe is the solenoidal or saddle coil surrounding the sample. The feasibility of such a DNP experiment is proven on magic angle oriented sample spinning. These experiments are conducted on oriented samples wrapped into a rotor. Through their orientation with regards to B0 is lost, enhancement values as high as 17 are obtained. [...]
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01038015 |
Date | 09 January 2014 |
Creators | Sarrouj, Hiba |
Publisher | Université de Strasbourg |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.002 seconds