Return to search

Ajuste de taxas de mutação e de cruzamento de algoritmos genéticos utilizando-se inferências nebulosas. / Adjusments in genetic algorithms mutation and crossover rates using fuzzy inferences.

Neste trabalho foi realizada uma proposta de utilização de Sistemas de Inferência Nebulosos para controlar, em tempo de execução, parâmetros de Algoritmos Genéticos. Esta utilização busca melhorar o desempenho de Algoritmos Genéticos diminuindo, ao mesmo tempo: a média de iterações necessárias para que um Algoritmo Genético encontre o valor ótimo global procurado; bem como diminuindo o número de execuções do mesmo que não são capazes de encontrar o valor ótimo global procurado, nem mesmo para quantidades elevadas de iterações. Para isso, foram analisados os resultados de diversos experimentos com Algoritmos Genéticos, resolvendo instâncias dos problemas de Minimização de Funções e do Caixeiro Viajante, sob diferentes configurações de parâmetros. Com base nos resultados obtidos a partir destes experimentos, foi proposto um modelo com a troca de valores de parâmetros de Algoritmos Genéticos, em tempo de execução, pela utilização de Sistemas de Inferência Nebulosos, de forma a melhorar o desempenho do sistema, minimizando ambas as medidas citadas anteriormente. / This work addressed a proposal of the application of Fuzzy Systems to adjust parameters of Genetic Algorithms, during execution time. This application attempts to improve the performance of Genetic Algorithms by diminishing, at the same time: the average number of necessary generations for a Genetic Algorithm to find the desired global optimum value, as well as diminishing the number of executions of a Genetic Algorithm that are not capable of finding the desired global optimum value even for high numbers of generations. For that purpose, the results of many experiments with Genetic Algorithms were analyzed; addressing instances of the Function Minimization and the Travelling Salesman problems, under different parameter configurations. With the results obtained from these experiments, a model was proposed, for the exchange of parameter values of Genetic Algorithms, in execution time, by using Fuzzy Systems, in order to improve the performance of the system, minimizing both of the measures previously cited.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14082009-180444
Date31 March 2009
CreatorsMauricio Alexandre Parente Burdelis
ContributorsMarco Túlio Carvalho de Andrade, Marcio Lobo Netto, Flávio Soares Corrêa da Silva
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.1063 seconds