Return to search

Aspects of memory and representation in cortical computation

Denna avhandling i datalogi föreslår modeller för hur vissa beräkningsmässiga uppgifter kan utföras av hjärnbarken. Utgångspunkten är dels kända fakta om hur en area i hjärnbarken är uppbyggd och fungerar, dels etablerade modellklasser inom beräkningsneurobiologi, såsom attraktorminnen och system för gles kodning. Ett neuralt nätverk som producerar en effektiv gles kod i binär mening för sensoriska, särskilt visuella, intryck presenteras. Jag visar att detta nätverk, när det har tränats med naturliga bilder, reproducerar vissa egenskaper (receptiva fält) hos nervceller i lager IV i den primära synbarken och att de koder som det producerar är lämpliga för lagring i associativa minnesmodeller. Vidare visar jag hur ett enkelt autoassociativt minne kan modifieras till att fungera som ett generellt sekvenslärande system genom att utrustas med synapsdynamik. Jag undersöker hur ett abstrakt attraktorminnessystem kan implementeras i en detaljerad modell baserad på data om hjärnbarken. Denna modell kan sedan analyseras med verktyg som simulerar experiment som kan utföras på en riktig hjärnbark. Hypotesen att hjärnbarken till avsevärd del fungerar som ett attraktorminne undersöks och visar sig leda till prediktioner för dess kopplingsstruktur. Jag diskuterar också metodologiska aspekter på beräkningsneurobiologin idag. / In this thesis I take a modular approach to cortical function. I investigate how the cerebral cortex may realise a number of basic computational tasks, within the framework of its generic architecture. I present novel mechanisms for certain assumed computational capabilities of the cerebral cortex, building on the established notions of attractor memory and sparse coding. A sparse binary coding network for generating efficient representations of sensory input is presented. It is demonstrated that this network model well reproduces the simple cell receptive field shapes seen in the primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realised on the microcircuit level -- and how it may be analysed using tools similar to those used experimentally. I outline some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimised for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience. / QC 20100916

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4161
Date January 2006
CreatorsRehn, Martin
PublisherKTH, Numerisk Analys och Datalogi, NADA, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-NA, 0348-2952 ; 2006:17

Page generated in 0.0028 seconds