Return to search

Dynamic behavior of phytoplankton populations far from steady state : chemostat experiments and mathematical modeling

Nature changes continuously and is only seemingly at equilibrium. Environmental parameters like temperature, humidity or insolation may strongly fluctuate on scales ranging from seconds to millions of years. Being part of an ecosystem, species have to cope with these environmental changes. For ecologists, it is of special interest how individual responses to environmental changes affect the dynamics of an entire population – and, if this behavior is predictable. In this context, the demographic structure of a population plays a decisive role since it originates from processes of growth and mortality. These processes are fundamentally influenced by the environment. But, how exactly does the environment influence the behavior of populations? And what does the transient behavior look like?
As a result from environmental influences on demography, so called cohorts form. They are age or size classes that are disproportionally represented in the demographic distribution of a population. For instance, if most old and young individuals die due to a cold spell, the population finally consists of mainly middle-aged individuals. Hence, the population got synchronized. Such a population tends to show regular fluctuations in numbers (denoted as oscillations) since the alternating phases of individual growth and population growth (due to reproduction) are now performed synchronously by the majority of the population.That is, one time the population growths, and the other time it declines due to mortality. Synchronous behavior is one of the most pervasive phenomena in nature. Gravitational synchrony in the solar system; fireflies flashing in unison; coordinate firing of pacemaker cells in the heart; electrons in a superconductor marching in lockstep. Whatever scale one looks at, in animate as well as inanimate systems, one is likely to encounter synchrony. In experiments with phytoplankton populations, I could show that this principle of synchrony (as used by physicists) could well-explain the oscillations observed in the experiments, too. The size of the fluctuations depended on the strength by which environmental parameters changed as well as on the demographic state of a population prior to this change. That is, two population living in different habitats can be equally influenced by an environmental change, however, the resulting population dynamics may be significantly different when both populations differed in their demographic state before. Moreover, specific mechanisms relevant for the dynamic behavior of populations, appear only when the environmental conditions change.
In my experiments, the population density declined by 50% after ressource supply was doubled. This counter-intuitive behavior can be explained by increasing ressource consumption. The phytoplankton cells grew larger and enhanced their individual constitution. But at the same time, reproduction was delayed and the population density declined due to the losses by mortality.
Environmental influences can also synchronize two or more populations over large distances, which is denoted as Moran effect. Assume two populations living on two distant islands. Although there is no exchange of individuals between them, both populations show a high similarity when comparing their time series. This is because the globally acting climate synchronizes the regionally acting weather on both island. Since the weather fluctuations influence the population dynamics, the Moran effect states that the synchrony between the environment equals the one between the populations. My experiments support this theory and also explain deviations arising when accounting for differences in the populations and the habitats they are living in. Moreover, model simulations and experiments astonishingly show that the synchrony between the populations can be higher than between the environment, when accounting for differences in the environmental fluctuations (“noise color”). / Die Natur unterliegt ständigen Veränderungen und befindet sich nur vermeintlich in einem Gleichgewicht. Umweltparameter wie Temperatur, Luftfeuchtigkeit oder Sonneneinstrahlung schwanken auf einer Zeitskala von Sekunden bis Jahrmillionen und beinhalten teils beträchtliche Unterschiede. Mit diesen Umweltveränderungen müssen sich Arten als Teil eines Ökosystems auseinandersetzen. Für Ökologen ist interessant, wie sich individuelle Reaktionen auf die Umweltveränderungen im dynamischen Verhalten einer ganzen Population bemerkbar machen und ob deren Verhalten vorhersagbar ist. Der Demografie einer Population kommt hierbei eine entscheidende Rolle zu, da sie das Resultat von Wachstums- und Sterbeprozessen darstellt. Eben jene Prozesse werden von der Umwelt maßgeblich beeinflusst. Doch wie genau beeinflussen Umweltveränderungen das Verhalten ganzer Populationen? Wie sieht das vorübergehende, transiente Verhalten aus?
Als Resultat von Umwelteinflüssen bilden sich in Populationen sogenannte Kohorten, hinsichtlich der Zahl an Individuen überproportional stark vertretene Alters- oder Größenklassen. Sterben z.B. aufgrund eines außergewöhnlich harten Winters, die alten und jungen Individuen einer Population, so besteht diese anschließend hauptsächlich aus Individuen mittleren Alters. Sie wurde sozusagen synchronisiert. Eine solche Populationen neigt zu regelmäßigen Schwankungen (Oszillationen) in ihrer Dichte, da die sich abwechselnden Phasen der individuellen Entwicklung und der Reproduktion nun von einem Großteil der Individuen synchron durchschritten werden. D.h., mal wächst die Population und mal nimmt sie entsprechend der Sterblichkeit ab. In Experimenten mit Phytoplankton-Populationen konnte ich zeigen, dass dieses oszillierende Verhalten mit dem in der Physik gebräuchlichen
Konzept der Synchronisation beschrieben werden kann. Synchrones Verhalten ist eines der verbreitetsten Phänomene in der Natur und kann z.B. in synchron schwingenden Brücken, als auch bei der Erzeugung von Lasern oder in Form von rhythmischem Applaus auf einem Konzert beobachtet werden. Wie stark die Schwankungen sind, hängt dabei sowohl von der Stärke der Umweltveränderung als auch vom demografischen Zustand der Population vor der Veränderung ab. Zwei Populationen, die sich in verschiedenen Habitaten aufhalten, können zwar gleich stark von einer Umweltveränderung beeinflusst werden. Die Reaktionen im anschließenden Verhalten können jedoch äußerst unterschiedlich ausfallen, wenn sich die Populationen zuvor in stark unterschiedlichen demografischen Zuständen befanden. Darüber hinaus treten bestimmte, für das Verhalten einer Population relevante Mechanismen überhaupt erst in Erscheinung, wenn sich die Umweltbedingungen ändern. So fiel in Experimenten beispielsweise die Populationsdichte um rund 50 Prozent ab nachdem sich die Ressourcenverfügbarkeit verdoppelte. Der Grund für dieses gegenintuitive Verhalten konnte mit der erhöhten Aufnahme von Ressourcen erklärt werden. Damit verbessert eine Algenzelle zwar die eigene Konstitution, jedoch verzögert sich dadurch die auch die Reproduktion und die Populationsdichte nimmt gemäß ihrer Verluste bzw. Sterblichkeit ab.
Zwei oder mehr räumlich getrennte Populationen können darüber hinaus durch Umwelteinflüsse synchronisiert werden. Dies wird als Moran-Effekt bezeichnet. Angenommen auf zwei weit voneinander entfernten Inseln lebt jeweils eine Population. Zwischen beiden findet kein Austausch statt – und doch zeigt sich beim Vergleich ihrer Zeitreihen eine große Ähnlichkeit. Das überregionale Klima synchronisiert hierbei die lokalen Umwelteinflüsse. Diese wiederum bestimmen das Verhalten der jeweiligen Population. Der Moran-Effekt besagt nun, dass die Ähnlichkeit zwischen den Populationen jener zwischen den Umwelteinflüssen entspricht, oder geringer ist. Meine Ergebnisse bestätigen dies und zeigen darüber hinaus, dass sich die Populationen sogar ähnlicher sein können als die Umwelteinflüsse, wenn man von unterschiedlich stark schwankenden Einflüssen ausgeht.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5810
Date January 2011
CreatorsMassie, Thomas Michael
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie
Source SetsPotsdam University
LanguageGerman
Detected LanguageGerman
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0025 seconds