This work is a study of the relationship between Brownian motion and elementary, linear partial differential equations. In the text, I have shown that Brownian motion is a Markov process, and that Brownian motion itself, and certain Stochastic processes involving Brownian motion are also martingales. In particular, Dynkin's formula for Brownian motion was shown. Using Dynkin's formula and Brownian motion, I then constructed solutions for the classical Dirichlet problem and the heat equation, given by Δu=0 and ut= 1/2Δu+g, respectively. I have shown that the bounded solution is unique if Brownian motion will always exit the domain of the function once it has started at a point in the domain. The heat equation also has a unique bounded solution.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8102 |
Date | 01 May 1985 |
Creators | McKay, Steven M. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0017 seconds