Neuropathic pain is a prevalent disease with no effective, safe treatments and limited knowledge on the mechanisms involved. One target for neuropathic pain treatment may be the blockade of Dynorphin A (Dyn A). Dyn A is a unique endogenous ligand that possesses well-known neuroinhibitory effects via opioid receptors and neuroexcitatory effects that are mediated through the bradykinin 2 receptors (B2Rs). Extensive SAR was carried out to develop a ligand for the blockade of the excitatory actions of Dyn A at the B2R. A lead ligand was able to block Dyn A-induced hyperalgesia in naïve animals and was effective in a neuropathic pain model. However, the ligand was susceptible to enzymatic degradation. In an effort to increase the stability, modifications of the ligand using non-natural amino acids were performed. Analogues substituted at or near the N-terminus with a D-isomer retained binding at the receptor as well as provided a large increase in stability. These ligands were also found to be non-toxic in a cell toxicity assay. Dyn A has been found to not activate the classical signaling of the B2R, PI hydrolysis or Ca²⁺ mobilization. In an effort to determine Dyn A's signaling, a study was done examining up-regulation of phosphorylated proteins. It was found that Dyn A did not activate; pERK, 7 PKC isoforms or PKA. A well known B2R antagonist, HOE140, was found to have low affinity at rat and guinea pig brain B2Rs but high affinity in the guinea pig ileum. Further examination revealed that this discrepancy in binding may arise from a different isoform of the B2R that has not been previously examined. To date, we have discovered Dyn A analogues that have high affinity for the B2R, are very stable, and have low toxicity. The signaling pathway is still not fully understood, but further studies are underway. Also, there is evidence that the B2R in which the analogues are interacting at may be a different form than what has previously been described. Targeting this different isoform of the B2R with our current stable ligands may provide beneficial therapeutics for the treatment of neuropathic pain without the cardiovascular liabilities.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/578606 |
Date | January 2015 |
Creators | Hall, Sara M. |
Contributors | Hruby, Victor J., Hruby, Victor J., Horton, Nancy, Jewett, John, Lai, Josephine |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds