Return to search

Mechanical Properties of Maturing Dystrophic Skeletal Muscle

The main goal for my research was to challenge the long held belief that the mechanical properties of maturing dystrophic compared to control skeletal muscle membranes are weaker, leading to onset of Duchenne muscular dystrophy (DMD). We built on a previous report from our lab that suggested sarcolemmal membranes from dystrophic mice are not more susceptible to damage early in maturation (i.e., age 9-12 days) and determined if and when muscle mechanical properties change as the mice mature. Across four studies, I have helped define the role of dystrophin-deficient skeletal muscle membranes in the onset of DMD.

A linear viscoelastic muscle model was used to determine passive stiffness and damping in control and dystrophic muscles from maturing mice aged 14-35 days. Results confirmed my hypothesis that there are no differences in passive mechanical properties between normal and dystrophic mice.

Recognizing the limitations of the linear model, a nonlinear model was developed to determine the stiffness and damping of active and passive dystrophic muscles from maturing mice aged 21 and 35 days. The nonlinear model achieved a significantly better fit to experimental data than the linear model when muscles were stretched to 15% strain beyond resting length. Active and passive mechanical properties of dystrophic mice were not different than control at 14 and 28 days of age.

The previously developed nonlinear model was used to determine a more complete time-course (14-100 days of age) of dystrophic muscle mechanical properties. There was no difference in passive stiffness between mdx and control muscles at each age. However, the mdx:utrn-/- muscles showed increased stiffness compared to control and mdx muscles at 21 and 28 days, suggesting a temporary change within the muscle that only occurs with a lack of both utrophin and dystrophin.

Fast-twitch and slow-twitch muscle mechanical properties were compared in control and dystrophic mice aged 3, 5, and 9 weeks of age. Dystrophic and control slow-twitch muscles did not have different mechanical properties, suggesting that a lack of dystrophin does not affect slow-twitch muscles during maturation (3-5 weeks) or well after maturation (9 weeks). / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/37922
Date04 June 2007
CreatorsWolff, Andrew
ContributorsMechanical Engineering, Cotton, John R., Madigan, Michael L., Duma, Stefan M., Granata, Kevin P., Grange, Robert W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationWolff_PhD_Dissertation_rev11.pdf

Page generated in 0.002 seconds