Return to search

Performance Characterization of Complex Fuel Port Geometries for Hybrid Rocket Fuel Grains

This research investigated the 3D printing and burning of fuel grains with complex geometry and the development of software capable of modeling and predicting the regression of a cross-section of these complex fuel grains. The software developed did predict the geometry to a fair degree of accuracy, especially when enhanced corner rounding was turned on. The model does have some drawbacks, notably being relatively slow, and does not perfectly predict the regression. If corner rounding is turned off, however, the model does become much faster; although less accurate, this method does still predict a relatively accurate resulting burn geometry, and is fast enough to be used for performance-tuning or genetic algorithms. In addition to the modeling method, preliminary investigations into the burning behavior of fuel grains with a helical flow path were performed. The helix fuel grains have a regression rate of nearly 3 times that of any other fuel grain geometry, primarily due to the enhancement of the friction coefficient between the flow and flow path.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2378
Date01 December 2012
CreatorsBath, Andrew
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0016 seconds