Thesis (M.Sc.Eng.) PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / Synthetic jet is a quasi-steady jet of fluid generated by oscillating pressure drop across an orifice, produced by a piston-like actuator. A unique advantage of the synthetic jet is that it is able to transfer linear momentum without requiring an external fluid source, and has therefore attracted much research within the past decade. Principal applications include aerodynamic flow boundary-layer separation control, heat transfer enhancement, mixing enhancement, and flow-generated sound minimization.
In this thesis, the method of deriving the volume flux equation for a duct is first reviewed, combined with this method, a simplified synthetic jet model is presented, based on the principles of aerodynamic sound, the pressure fluctuation in the acoustic far field is predicted. This model is then been used to predict the minimum synthetic jet cavity resonance frequency, acoustic power, acoustic efficiency, root-mean-square jet speed, acoustic spectrum and their dependence on the following independent parameters: the duct length and radius, the aperture radius, the piston vibration frequency, and the maximum piston velocity. / 2031-01-01
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/21179 |
Date | January 2014 |
Creators | Huang, Zhendong |
Publisher | Boston University |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0015 seconds