Return to search

Robustness of Latent Variable Interaction Methods to Nonnormal Exogenous Indicators

abstract: For this thesis a Monte Carlo simulation was conducted to investigate the robustness of three latent interaction modeling approaches (constrained product indicator, generalized appended product indicator (GAPI), and latent moderated structural equations (LMS)) under high degrees of nonnormality of the exogenous indicators, which have not been investigated in previous literature. Results showed that the constrained product indicator and LMS approaches yielded biased estimates of the interaction effect when the exogenous indicators were highly nonnormal. When the violation of nonnormality was not severe (symmetric with excess kurtosis < 1), the LMS approach with ML estimation yielded the most precise latent interaction effect estimates. The LMS approach with ML estimation also had the highest statistical power among the three approaches, given that the actual Type-I error rates of the Wald and likelihood ratio test of interaction effect were acceptable. In highly nonnormal conditions, only the GAPI approach with ML estimation yielded unbiased latent interaction effect estimates, with an acceptable actual Type-I error rate of both the Wald test and likelihood ratio test of interaction effect. No support for the use of the Satorra-Bentler or Yuan-Bentler ML corrections was found across all three methods. / Dissertation/Thesis / M.A. Psychology 2010

Identiferoai:union.ndltd.org:asu.edu/item:8646
Date January 2010
ContributorsCham, Hei Ning (Author), West, Stephen G (Advisor), Aiken, Leona S (Committee member), Enders, Craig K (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format68 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0013 seconds