Return to search

Limits of tectonic reactivation on Mars using Earth analogue analysis and numerical modeling

Recent geodynamic modeling studies suggest that the geometry of structural landforms in the Ouachita Mountains (OM) has been influenced by the reactivation of a weak scar in the mantle-lithosphere during intracontinental orogenesis. As deformation on one-plate planets such as Mars can be considered intracontinental, and impact cratering deeply scarred the Martian lithosphere, we hypothesize that structural geometries on Mars may also reflect heterogenous networks of lithospheric scarring. To investigate this hypothesis, we model the pre-erosional fold structure of the Maumelle Chaotic Zone in the OM to compare fault and fold geometries with that of the seismically-imaged mantle-lithosphere scar. We then numerically model deformation within the Martian crust and mantle-lithosphere in the presence of scarring to understand tectonic reactivation on one-plate planets. We find that structural geometries in the OM are consistent with a subsurface scar, and tectonic landforms on the surface of Mars may indeed reflect deformation generated by a network of lithospheric heterogeneity.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6815
Date12 May 2023
CreatorsRich, Jonathan
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0021 seconds