Fish larvae in Australian waters have been studied progressively in the last 2-3 decades including the distribution and abundance of taxa, growth and age, their prey and predators. However, the effect of nutrient limitation on ichthyoplankton is unstudied, particularly in the oligotrophic Australian waters. My study was aimed to examine the effect of natural or anthropogenic nutrients on the abundance, distribution, growth and condition of fish larvae along-shore of the NSW coast (latitude 30-34S), where the East Australian Current departs the NSW coast and generates local upwelling of cool nutrient-rich water. This study shows no significant difference in the total abundance or diversity of either larval fishes amongst the 112 taxa (111 families and 1 order), among regions within or upstream of the upwelling. However in both months, there were distinctive ichthyoplankton assemblages at the family level. The Carangidae, Labridae, Lutjanidae, Microcanthidae, Myctophidae and Scombridae were more abundant in the EAC or oceanic water masses, while the Callionymidae, Clupeidae, Platycephalidae, Sillaginidae and Terapontidae were mostly found in the surface or deep upwelled/uplifted water masses. This pattern is observed in other ichthyoplankton studies and may be a general and useful method to determine mixing of water masses. Larvae of silver trevally (Pseudocaranx dentex) and yellowtail scad (Trachurus novaezelandiae) were generally larger and less abundant in the topographically induced upwelling region, than north of the region in pre-upwelled conditions of the East Australian Current. Both species were mostly at the preflexion stage (less than 4.3 mm in body length and less than 10 days old) in the pre-upwelled conditions, particularly during November, and proportionally more larger and older larvae in the upwelled waters (mostly post-flexion, greater than 4.3 mm in body length and greater than 10 days old). Ages from sagittal otoliths ranged from 2-25 increments (~days) and exhibited linear growth for both species and months over the size range (3-15 mm standard length). The otolith radius-length relationship and the growth rates were similar between species and months, despite the 3-4C difference between months. Overall growth rates of the younger larvae were uniform throughout the entire sampling area (0.5-0.6 mm.d-1), while older larvae grew significantly faster in the upwelled water (0.41 mm.d-1) compared to the non-upwelled conditions (0.34 mm.d-1). Both species tended to be depleted in 13C in the upwelling region (from ???18.5 to ???19.0), consistent with expected ratios from deeper water, whereas the 15N composition tended to increase in Pseudocaranx, but decrease in Trachurus indicating different diets and possibly trophic level. The early life history of both species indicates spawning in pre-upwelled waters, but larval transport into upwelled waters is necessary for faster growth in the post-flexion stage. The assemblage of larval fishes did differ between the upwelled region and a region south of Sydney???s deepwater outfalls, but the difference was ascribed to a latitudinal effect and the EAC. Both larval carangids were enriched in 15N, possibly due to the enriched dissolved organic matter of primary treated sewage. In summary, this study found that the larval fish community can provide a biological means to trace water masses, and estimate their degree of mixing. Remarkably there was no significant effect of upwelling or sewage addition to the abundance or diversity of larval fish, in the nutrient poor waters of the East Australian Current. Larval carangids and pilchards were abundant in late spring off northern NSW, and their early life histories were inferred. Both larval carangid species seem to be spawned in the EAC waters, but as post-flexion larvae grew faster in the upwelled zone. Pre-flexion (less than 10 day old) larval carangids of both genera indicated spawning in the EAC, and the rarer post-flexion (greater than 10 days old) carangids grew faster in the upwelled waters. Here, both genera had stable isotope signatures characteristic of upwelled waters for carbon, but had different nitrogen signatures, indicative of different diets and trophic level status. Larval pilchards actually grew more slowly in the upwelling region, as observed in coastal waters off Japan, and their nursery grounds may be further offshore in the Tasman Front, analogous to their early life history in the Kuroshio Extension.
Identifer | oai:union.ndltd.org:ADTP/258797 |
Date | January 2005 |
Creators | Syahailatua, Augy, BEES, UNSW |
Publisher | Awarded by:University of New South Wales. BEES |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Augy Syahailatua, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0018 seconds