Pratique agricole répandue dans les champs sujets à l’accumulation d’eau en surface, le drainage souterrain améliore la productivité des cultures et réduit les risques de stagnation d’eau. La contribution significative du drainage sur les bilans d’eau à l’échelle de bassins versants, et sur les problèmes de contamination dus à l’épandage d’engrais et de fertilisant, a régulièrement été soulignée. Les écoulements d’eau souterraine associés au drainage étant souvent inconnus, leur représentation par modélisation numérique reste un défi majeur. Avant de considérer le transport d’espèces chimiques ou de sédiments, il est essentiel de simuler correctement les écoulements d’eau souterraine en milieu drainé. Dans cette perspective, le modèle HydroGeoSphere a été appliqué à deux bassins versants agricoles drainés du Danemark. Un modèle de référence a été développé à l’échelle d’une parcelle dans le bassin versant de Lillebæk pour tester une série de concepts de drainage dans une zone drainée de 3.5 ha. Le but était de définir une méthode de modélisation adaptée aux réseaux de drainage complexes à grande échelle. Les simulations ont indiqué qu’une simplification du réseau de drainage ou que l’utilisation d’un milieu équivalent sont donc des options appropriées pour éviter les maillages hautement discrétisés. Le calage des modèles reste cependant nécessaire. Afin de simuler les variations saisonnières des écoulements de drainage, un modèle a ensuite été créé à l’échelle du bassin versant de Fensholt, couvrant 6 km2 et comprenant deux réseaux de drainage complexes. Ces derniers ont été simplifiés en gardant les drains collecteurs principaux, comme suggéré par l’étude de Lillebæk. Un calage du modèle par rapport aux débits de drainage a été réalisé : les dynamiques d’écoulement ont été correctement simulées, avec une faible erreur de volumes cumulatifs drainés par rapport aux observations. Le cas de Fensholt a permis de valider les conclusions des tests de Lillebæk, ces résultats ouvrant des perspectives de modélisation du drainage lié à des questions de transport. / Tile drainage is a common agricultural management practice in plots prone to ponding issues. Drainage enhances crop productivity and reduces waterlogging risks. Studies over the last few decades have highlighted the significant contribution of subsurface drainage to catchments water balance and contamination issues related to manure or fertilizer application at the soil surface. Groundwater flow patterns associated with drainage are often unknown and their representation in numerical models, although powerful analysis tools, is still a major challenge. Before considering chemical species or sediment transport, an accurate water flow simulation is essential. The integrated fully-coupled hydrological HydroGeoSphere code was applied to two highly tile-drained agricultural catchments of Denmark (Lillebæk and Fensholt) in the present work. A first model was developed at the field scale from the Lillebæk catchment. A reference model was set and various drainage concepts and boundary conditions were tested in a 3.5 ha tile-drained area to find a suitable option in terms of model performance and computing time for larger scale modeling of complex drainage networks. Simulations suggested that a simplification of the geometry of the drainage network or using an equivalent-medium layer are suitable options for avoiding highly discretized meshes, but further model calibration is required. A catchment scale model was subsequently built in Fensholt, covering 6 km2 and including two complex drainage networks. The aim was to perform a year-round simulation accounting for variations in seasonal drainage flow. Both networks were simplified with the main collecting drains kept in the model, as suggested by the Lillebæk study. Calibration against hourly measured drainage discharge data was performed resulting in a good model performance. Drainage flow and flow dynamics were accurately simulated, with low cumulative error in drainage volume. The Fensholt case validated the Lillebæk test conclusions, allowing for further drainage modeling linked with transport issues.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26532 |
Date | 23 April 2018 |
Creators | Schepper, Guillaume de |
Contributors | Therrien, René |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xv, 148 pages), application/pdf |
Coverage | Danemark |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0017 seconds