Mullet Key is a right angle barrier island located at the mouth of Tampa Bay, west-central Florida. Based on historical shoreline data from 1873, the Gulf (west)-facing section of the beach has been dynamic illustrating large beach advances and retreats of up to 500 m on a decadal scale, while the south (channel)-facing section of the beach has shown to maintain a stable shoreline. This study focuses on the morphodynamics of the Gulf-facing beach. Since the 1920s, most of the Gulf-facing beach has been accreting except at the southern end near the Tampa Bay main channel. However, over the past 17 years, severe beach erosion has occurred along the northern portion of the island while accretion occurred along the middle portion. The southern end of the island has been maintained through artificial beach nourishments. Analysis of 27 aerial images from 1942 to 2014 revealed that the above large shoreline variations can be explained by the initiation, emergence, landward migrating, shoreline attachment, and post-attachment beach adjustment of the swash-bar complex on the Bunces Pass ebb delta. Two cycles of the swash-bar complex attachments with a period of approximately 30 years were identified from the aerial photos spanning 72 years.
Twenty-eight beach-profiles spanning the 4 km Mullet Key Gulf-facing beach were surveyed 7 times on a bi-monthly basis from March 2014 to February 2015 to quantify the recent rapid changes, and to assess a yearly rate of shoreline change. Beach-profile analyses showed that the 120 m beach at the north-most tip in the immediate vicinity of Bunces Pass has lost a small amount of sediment. The 360 m beach to the south has gained some sediment. The 670 m stretch of beach further south has had significant shoreline retreat at a rate of 10-15 m/year. The 2,400 m section southward has experienced some gain of sediment, while the 370 m nourished beach at the southernmost tip has had slight retreat. This beach change pattern illustrates a diverging longshore sediment transport. Nearshore wave and current conditions were measured during a cold front passage in December 2014 to quantify the hydrodynamic processes that induced the diverging longshore transport. Three wave and current gauges were deployed along the eroding and accreting sections. The hydrodynamic data reveal that the longshore transport divergence is caused by diverging flood tidal flow into Bunces Pass to the north and Tampa Bay channel to the south. Furthermore, the waves in front the eroding beach were higher than the adjacent accreting beach.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-6770 |
Date | 24 March 2015 |
Creators | Sandoval, Emeli |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0033 seconds