Return to search

Evaluating and Improving Domain-Specific Programming Education: A Case Study with Cal Poly Chemistry Courses

Programming is a key skill in many domains outside computer science. When used judiciously, programming can empower people to accomplish what might be impossible or difficult with traditional methods. Unfortunately, students, especially non-CS majors, frequently have trouble while learning to program. This work reports on the challenges and opportunities faced by Physical Chemistry (PChem) students at Cal Poly, SLO as they learn to program in MATLAB. We assessed the PChem students through a multiple-choice concept inventory, as well as through “think-aloud” interviews. Additionally, we examined the students’ perceptions of and attitudes towards programming. We found that PChem students are adept at applying programming to a subset of problems, but their knowledge is fragile; like many intro CS students, they struggle to transfer their knowledge to different contexts and often express misconceptions about programming. However, they differ in that the PChem students are first and foremost Chemistry students, and so struggle to recognize appropriate applications of programming without scaffolding. Further, many students do not perceive themselves as competent general- purpose programmers. These factors combine to discourage students from applying programming to novel problems, even though it may be greatly beneficial to them. We leveraged this data to create a workshop with the goal of helping PChem students recognize their programming knowledge as a tool that they can apply to various contexts. This thesis presents a framework for addressing challenges and providing opportunities in domain-specific CS education.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4081
Date01 June 2022
CreatorsFuchs, Will
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0022 seconds