Return to search

ANALÝZA TUHOSTI PŘEDNÍ ČÁSTI VOZIDEL / STIFFNESS ANALYSIS OF FRONT PART OF THE VEHICLE

The thesis deals with the front part stiffness of modern vehicles, especially for the use in the field of forensic engineering in the traffic accident analysis. During the traffic accident analysis, an inquiry into the collision between vehicles is carried out which is an integral part of determining the energy loss of the vehicle at the impact, or more precisely the deformation energy expressed in the form of Energy Equivalent Speed (EES). In case of known stiffness of given part of the vehicle and based on the depth of deformation, it is possible to calculate the deformation energy, or more precisely EES corresponding with given damage of the vehicle. In the field of forensic engineering, the values of stiffness of individual vehicle components are not known and therefore, alternative methods are used to calculate the EES, they are outlined in the research part of this dissertation. However, the current methods of EES determination have some limitations when it comes to usability, and therefore, new EES calculation for the front part of the vehicle was designed in the research. It was based on the real crash test results using real stiffness characteristics of the front part of a vehicle. The front part of the vehicle is divided into individual areas and each of these parts is characterised by its own stiffness coefficient. The designed EES calculation can thus be also used for collisions with partial overlapping, taking into account the real stiffness of the damaged part of the vehicle, which was not possible with existing methods. In the research part of this dissertation, a computer programme to calculate deformation energy and EES was processed. It works with individual stiffness characteristics in given areas where the input data are entered by the user and include the depth of permanent front part deformation in individual areas, vehicle weight, the direction of an impact force and the friction coefficient on the contact surface. Considering the fact that the vehicle stiffness is also one of the control parameters at solving collisions in the PC-Crash simulation programme, which is used in forensic engineering practice for the analysis of a collision process, a supplementary computer programme was designed. Based on the above-mentioned input data, the supplementary programme can further calculate data for collision solving in the simulation programme, namely stiffness, restitution coefficient and the vehicle damage stated in the output report of the simulation programme. Based on these data, the expert thus has the opportunity to solve the collision of two vehicles in the simulation programme with as much preciseness as if it was a real collision.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234325
Date January 2015
CreatorsCoufal, Tomáš
ContributorsKovanda, Jan, Kohút,, Pavol, Vémola, Aleš
PublisherVysoké učení technické v Brně. Ústav soudního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds