This thesis deals with multi-channel methods of speech enhancement. Multichannel methods of speech enhancement use a few microphones for recording signals. From mixtures of signals, for example, individual speakers can be separated, noise should be reduced etc. with using neural networks. The task of separating speakers is known as a cocktail-party effect. The main method of solving this problem is called independent component analysis. At first there are described its theoretical foundation and presented conditions and requirements for its application. Methods of ICA try to separate the mixtures with help of searching the minimal gaussian properties of signals. For the analysis of independent components are used different mathematical properties of signals such as kurtosis and entropy. Signals, which were mixed artificially on a computer, can be relatively well separated using, for example, FastICA algorithm or ICA gradient ascent. However, difficult is situation, if we want to separate the signals created in the real recording enviroment, because the separation of speech people speaking at the same time in the real environment affects other various factors such as acoustic properties of the room, noise, delays, reflections from the walls, the position or the type of microphones, etc. Work presents aproach of independent component analysis in the frequency domain, which can successfully separate also recordings made in the real environment.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:217524 |
Date | January 2008 |
Creators | Zitka, Adam |
Contributors | Balík, Miroslav, Smékal, Zdeněk |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds